# WARNING ABOUT GENERATED CODE # # This file is generated. See the contributing guide for more information: # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md # # WARNING ABOUT GENERATED CODE module Aws::ForecastService module Types # Specifies a categorical hyperparameter and it's range of tunable # values. This object is part of the ParameterRanges object. # # @note When making an API call, you may pass CategoricalParameterRange # data as a hash: # # { # name: "Name", # required # values: ["Value"], # required # } # # @!attribute [rw] name # The name of the categorical hyperparameter to tune. # @return [String] # # @!attribute [rw] values # A list of the tunable categories for the hyperparameter. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CategoricalParameterRange AWS API Documentation # class CategoricalParameterRange < Struct.new( :name, :values) include Aws::Structure end # Specifies a continuous hyperparameter and it's range of tunable # values. This object is part of the ParameterRanges object. # # @note When making an API call, you may pass ContinuousParameterRange # data as a hash: # # { # name: "Name", # required # max_value: 1.0, # required # min_value: 1.0, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # } # # @!attribute [rw] name # The name of the hyperparameter to tune. # @return [String] # # @!attribute [rw] max_value # The maximum tunable value of the hyperparameter. # @return [Float] # # @!attribute [rw] min_value # The minimum tunable value of the hyperparameter. # @return [Float] # # @!attribute [rw] scaling_type # The scale that hyperparameter tuning uses to search the # hyperparameter range. Valid values: # # Auto # # : Amazon Forecast hyperparameter tuning chooses the best scale for # the hyperparameter. # # Linear # # : Hyperparameter tuning searches the values in the hyperparameter # range by using a linear scale. # # Logarithmic # # : Hyperparameter tuning searches the values in the hyperparameter # range by using a logarithmic scale. # # Logarithmic scaling works only for ranges that have values greater # than 0. # # ReverseLogarithmic # # : hyperparameter tuning searches the values in the hyperparameter # range by using a reverse logarithmic scale. # # Reverse logarithmic scaling works only for ranges that are # entirely within the range 0 <= x < 1.0. # # For information about choosing a hyperparameter scale, see # [Hyperparameter Scaling][1]. One of the following values: # # # # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ContinuousParameterRange AWS API Documentation # class ContinuousParameterRange < Struct.new( :name, :max_value, :min_value, :scaling_type) include Aws::Structure end # @note When making an API call, you may pass CreateDatasetGroupRequest # data as a hash: # # { # dataset_group_name: "Name", # required # domain: "RETAIL", # required, accepts RETAIL, CUSTOM, INVENTORY_PLANNING, EC2_CAPACITY, WORK_FORCE, WEB_TRAFFIC, METRICS # dataset_arns: ["Arn"], # } # # @!attribute [rw] dataset_group_name # A name for the dataset group. # @return [String] # # @!attribute [rw] domain # The domain associated with the dataset group. When you add a dataset # to a dataset group, this value and the value specified for the # `Domain` parameter of the CreateDataset operation must match. # # The `Domain` and `DatasetType` that you choose determine the fields # that must be present in training data that you import to a dataset. # For example, if you choose the `RETAIL` domain and # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires # that `item_id`, `timestamp`, and `demand` fields are present in your # data. For more information, see howitworks-datasets-groups. # @return [String] # # @!attribute [rw] dataset_arns # An array of Amazon Resource Names (ARNs) of the datasets that you # want to include in the dataset group. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetGroupRequest AWS API Documentation # class CreateDatasetGroupRequest < Struct.new( :dataset_group_name, :domain, :dataset_arns) include Aws::Structure end # @!attribute [rw] dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetGroupResponse AWS API Documentation # class CreateDatasetGroupResponse < Struct.new( :dataset_group_arn) include Aws::Structure end # @note When making an API call, you may pass CreateDatasetImportJobRequest # data as a hash: # # { # dataset_import_job_name: "Name", # required # dataset_arn: "Arn", # required # data_source: { # required # s3_config: { # required # path: "S3Path", # required # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # }, # }, # timestamp_format: "TimestampFormat", # } # # @!attribute [rw] dataset_import_job_name # The name for the dataset import job. We recommend including the # current timestamp in the name, for example, `20190721DatasetImport`. # This can help you avoid getting a `ResourceAlreadyExistsException` # exception. # @return [String] # # @!attribute [rw] dataset_arn # The Amazon Resource Name (ARN) of the Amazon Forecast dataset that # you want to import data to. # @return [String] # # @!attribute [rw] data_source # The location of the training data to import and an AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to # access the data. The training data must be stored in an Amazon S3 # bucket. # # If encryption is used, `DataSource` must include an AWS Key # Management Service (KMS) key and the IAM role must allow Amazon # Forecast permission to access the key. The KMS key and IAM role must # match those specified in the `EncryptionConfig` parameter of the # CreateDataset operation. # @return [Types::DataSource] # # @!attribute [rw] timestamp_format # The format of timestamps in the dataset. The format that you specify # depends on the `DataFrequency` specified when the dataset was # created. The following formats are supported # # * "yyyy-MM-dd" # # For the following data frequencies: Y, M, W, and D # # * "yyyy-MM-dd HH:mm:ss" # # For the following data frequencies: H, 30min, 15min, and 1min; and # optionally, for: Y, M, W, and D # # If the format isn't specified, Amazon Forecast expects the format # to be "yyyy-MM-dd HH:mm:ss". # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetImportJobRequest AWS API Documentation # class CreateDatasetImportJobRequest < Struct.new( :dataset_import_job_name, :dataset_arn, :data_source, :timestamp_format) include Aws::Structure end # @!attribute [rw] dataset_import_job_arn # The Amazon Resource Name (ARN) of the dataset import job. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetImportJobResponse AWS API Documentation # class CreateDatasetImportJobResponse < Struct.new( :dataset_import_job_arn) include Aws::Structure end # @note When making an API call, you may pass CreateDatasetRequest # data as a hash: # # { # dataset_name: "Name", # required # domain: "RETAIL", # required, accepts RETAIL, CUSTOM, INVENTORY_PLANNING, EC2_CAPACITY, WORK_FORCE, WEB_TRAFFIC, METRICS # dataset_type: "TARGET_TIME_SERIES", # required, accepts TARGET_TIME_SERIES, RELATED_TIME_SERIES, ITEM_METADATA # data_frequency: "Frequency", # schema: { # required # attributes: [ # { # attribute_name: "Name", # attribute_type: "string", # accepts string, integer, float, timestamp # }, # ], # }, # encryption_config: { # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # required # }, # } # # @!attribute [rw] dataset_name # A name for the dataset. # @return [String] # # @!attribute [rw] domain # The domain associated with the dataset. When you add a dataset to a # dataset group, this value and the value specified for the `Domain` # parameter of the CreateDatasetGroup operation must match. # # The `Domain` and `DatasetType` that you choose determine the fields # that must be present in the training data that you import to the # dataset. For example, if you choose the `RETAIL` domain and # `TARGET_TIME_SERIES` as the `DatasetType`, Amazon Forecast requires # `item_id`, `timestamp`, and `demand` fields to be present in your # data. For more information, see howitworks-datasets-groups. # @return [String] # # @!attribute [rw] dataset_type # The dataset type. Valid values depend on the chosen `Domain`. # @return [String] # # @!attribute [rw] data_frequency # The frequency of data collection. This parameter is required for # RELATED\_TIME\_SERIES datasets. # # Valid intervals are Y (Year), M (Month), W (Week), D (Day), H # (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), # 5min (5 minutes), and 1min (1 minute). For example, "D" indicates # every day and "15min" indicates every 15 minutes. # @return [String] # # @!attribute [rw] schema # The schema for the dataset. The schema attributes and their order # must match the fields in your data. The dataset `Domain` and # `DatasetType` that you choose determine the minimum required fields # in your training data. For information about the required fields for # a specific dataset domain and type, see howitworks-domains-ds-types. # @return [Types::Schema] # # @!attribute [rw] encryption_config # An AWS Key Management Service (KMS) key and the AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to # access the key. # @return [Types::EncryptionConfig] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetRequest AWS API Documentation # class CreateDatasetRequest < Struct.new( :dataset_name, :domain, :dataset_type, :data_frequency, :schema, :encryption_config) include Aws::Structure end # @!attribute [rw] dataset_arn # The Amazon Resource Name (ARN) of the dataset. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateDatasetResponse AWS API Documentation # class CreateDatasetResponse < Struct.new( :dataset_arn) include Aws::Structure end # @note When making an API call, you may pass CreateForecastExportJobRequest # data as a hash: # # { # forecast_export_job_name: "Name", # required # forecast_arn: "Arn", # required # destination: { # required # s3_config: { # required # path: "S3Path", # required # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # }, # }, # } # # @!attribute [rw] forecast_export_job_name # The name for the forecast export job. # @return [String] # # @!attribute [rw] forecast_arn # The Amazon Resource Name (ARN) of the forecast that you want to # export. # @return [String] # # @!attribute [rw] destination # The location where you want to save the forecast and an AWS Identity # and Access Management (IAM) role that Amazon Forecast can assume to # access the location. The forecast must be exported to an Amazon S3 # bucket. # # If encryption is used, `Destination` must include an AWS Key # Management Service (KMS) key. The IAM role must allow Amazon # Forecast permission to access the key. # @return [Types::DataDestination] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastExportJobRequest AWS API Documentation # class CreateForecastExportJobRequest < Struct.new( :forecast_export_job_name, :forecast_arn, :destination) include Aws::Structure end # @!attribute [rw] forecast_export_job_arn # The Amazon Resource Name (ARN) of the export job. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastExportJobResponse AWS API Documentation # class CreateForecastExportJobResponse < Struct.new( :forecast_export_job_arn) include Aws::Structure end # @note When making an API call, you may pass CreateForecastRequest # data as a hash: # # { # forecast_name: "Name", # required # predictor_arn: "Arn", # required # forecast_types: ["ForecastType"], # } # # @!attribute [rw] forecast_name # A name for the forecast. # @return [String] # # @!attribute [rw] predictor_arn # The Amazon Resource Name (ARN) of the predictor to use to generate # the forecast. # @return [String] # # @!attribute [rw] forecast_types # The quantiles at which probabilistic forecasts are generated. You # can specify up to 5 quantiles per forecast. Accepted values include # `0.01 to 0.99` (increments of .01 only) and `mean`. The mean # forecast is different from the median (0.50) when the distribution # is not symmetric (e.g. Beta, Negative Binomial). The default value # is `["0.1", "0.5", "0.9"]`. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastRequest AWS API Documentation # class CreateForecastRequest < Struct.new( :forecast_name, :predictor_arn, :forecast_types) include Aws::Structure end # @!attribute [rw] forecast_arn # The Amazon Resource Name (ARN) of the forecast. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreateForecastResponse AWS API Documentation # class CreateForecastResponse < Struct.new( :forecast_arn) include Aws::Structure end # @note When making an API call, you may pass CreatePredictorRequest # data as a hash: # # { # predictor_name: "Name", # required # algorithm_arn: "Arn", # forecast_horizon: 1, # required # perform_auto_ml: false, # perform_hpo: false, # training_parameters: { # "ParameterKey" => "ParameterValue", # }, # evaluation_parameters: { # number_of_backtest_windows: 1, # back_test_window_offset: 1, # }, # hpo_config: { # parameter_ranges: { # categorical_parameter_ranges: [ # { # name: "Name", # required # values: ["Value"], # required # }, # ], # continuous_parameter_ranges: [ # { # name: "Name", # required # max_value: 1.0, # required # min_value: 1.0, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # integer_parameter_ranges: [ # { # name: "Name", # required # max_value: 1, # required # min_value: 1, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # }, # }, # input_data_config: { # required # dataset_group_arn: "Arn", # required # supplementary_features: [ # { # name: "Name", # required # value: "Value", # required # }, # ], # }, # featurization_config: { # required # forecast_frequency: "Frequency", # required # forecast_dimensions: ["Name"], # featurizations: [ # { # attribute_name: "Name", # required # featurization_pipeline: [ # { # featurization_method_name: "filling", # required, accepts filling # featurization_method_parameters: { # "ParameterKey" => "ParameterValue", # }, # }, # ], # }, # ], # }, # encryption_config: { # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # required # }, # } # # @!attribute [rw] predictor_name # A name for the predictor. # @return [String] # # @!attribute [rw] algorithm_arn # The Amazon Resource Name (ARN) of the algorithm to use for model # training. Required if `PerformAutoML` is not set to `true`. # # **Supported algorithms:** # # * `arn:aws:forecast:::algorithm/ARIMA` # # * `arn:aws:forecast:::algorithm/Deep_AR_Plus` # # Supports hyperparameter optimization (HPO) # # * `arn:aws:forecast:::algorithm/ETS` # # * `arn:aws:forecast:::algorithm/NPTS` # # * `arn:aws:forecast:::algorithm/Prophet` # @return [String] # # @!attribute [rw] forecast_horizon # Specifies the number of time-steps that the model is trained to # predict. The forecast horizon is also called the prediction length. # # For example, if you configure a dataset for daily data collection # (using the `DataFrequency` parameter of the CreateDataset operation) # and set the forecast horizon to 10, the model returns predictions # for 10 days. # # The maximum forecast horizon is the lesser of 500 time-steps or 1/3 # of the TARGET\_TIME\_SERIES dataset length. # @return [Integer] # # @!attribute [rw] perform_auto_ml # Whether to perform AutoML. When Amazon Forecast performs AutoML, it # evaluates the algorithms it provides and chooses the best algorithm # and configuration for your training dataset. # # The default value is `false`. In this case, you are required to # specify an algorithm. # # Set `PerformAutoML` to `true` to have Amazon Forecast perform # AutoML. This is a good option if you aren't sure which algorithm is # suitable for your training data. In this case, `PerformHPO` must be # false. # @return [Boolean] # # @!attribute [rw] perform_hpo # Whether to perform hyperparameter optimization (HPO). HPO finds # optimal hyperparameter values for your training data. The process of # performing HPO is known as running a hyperparameter tuning job. # # The default value is `false`. In this case, Amazon Forecast uses # default hyperparameter values from the chosen algorithm. # # To override the default values, set `PerformHPO` to `true` and, # optionally, supply the HyperParameterTuningJobConfig object. The # tuning job specifies a metric to optimize, which hyperparameters # participate in tuning, and the valid range for each tunable # hyperparameter. In this case, you are required to specify an # algorithm and `PerformAutoML` must be false. # # The following algorithm supports HPO: # # * DeepAR+ # # ^ # @return [Boolean] # # @!attribute [rw] training_parameters # The hyperparameters to override for model training. The # hyperparameters that you can override are listed in the individual # algorithms. For the list of supported algorithms, see # aws-forecast-choosing-recipes. # @return [Hash] # # @!attribute [rw] evaluation_parameters # Used to override the default evaluation parameters of the specified # algorithm. Amazon Forecast evaluates a predictor by splitting a # dataset into training data and testing data. The evaluation # parameters define how to perform the split and the number of # iterations. # @return [Types::EvaluationParameters] # # @!attribute [rw] hpo_config # Provides hyperparameter override values for the algorithm. If you # don't provide this parameter, Amazon Forecast uses default values. # The individual algorithms specify which hyperparameters support # hyperparameter optimization (HPO). For more information, see # aws-forecast-choosing-recipes. # # If you included the `HPOConfig` object, you must set `PerformHPO` to # true. # @return [Types::HyperParameterTuningJobConfig] # # @!attribute [rw] input_data_config # Describes the dataset group that contains the data to use to train # the predictor. # @return [Types::InputDataConfig] # # @!attribute [rw] featurization_config # The featurization configuration. # @return [Types::FeaturizationConfig] # # @!attribute [rw] encryption_config # An AWS Key Management Service (KMS) key and the AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to # access the key. # @return [Types::EncryptionConfig] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreatePredictorRequest AWS API Documentation # class CreatePredictorRequest < Struct.new( :predictor_name, :algorithm_arn, :forecast_horizon, :perform_auto_ml, :perform_hpo, :training_parameters, :evaluation_parameters, :hpo_config, :input_data_config, :featurization_config, :encryption_config) include Aws::Structure end # @!attribute [rw] predictor_arn # The Amazon Resource Name (ARN) of the predictor. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreatePredictorResponse AWS API Documentation # class CreatePredictorResponse < Struct.new( :predictor_arn) include Aws::Structure end # The destination for an exported forecast, an AWS Identity and Access # Management (IAM) role that allows Amazon Forecast to access the # location and, optionally, an AWS Key Management Service (KMS) key. # This object is submitted in the CreateForecastExportJob request. # # @note When making an API call, you may pass DataDestination # data as a hash: # # { # s3_config: { # required # path: "S3Path", # required # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # }, # } # # @!attribute [rw] s3_config # The path to an Amazon Simple Storage Service (Amazon S3) bucket # along with the credentials to access the bucket. # @return [Types::S3Config] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DataDestination AWS API Documentation # class DataDestination < Struct.new( :s3_config) include Aws::Structure end # The source of your training data, an AWS Identity and Access # Management (IAM) role that allows Amazon Forecast to access the data # and, optionally, an AWS Key Management Service (KMS) key. This object # is submitted in the CreateDatasetImportJob request. # # @note When making an API call, you may pass DataSource # data as a hash: # # { # s3_config: { # required # path: "S3Path", # required # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # }, # } # # @!attribute [rw] s3_config # The path to the training data stored in an Amazon Simple Storage # Service (Amazon S3) bucket along with the credentials to access the # data. # @return [Types::S3Config] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DataSource AWS API Documentation # class DataSource < Struct.new( :s3_config) include Aws::Structure end # Provides a summary of the dataset group properties used in the # ListDatasetGroups operation. To get the complete set of properties, # call the DescribeDatasetGroup operation, and provide the # `DatasetGroupArn`. # # @!attribute [rw] dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group. # @return [String] # # @!attribute [rw] dataset_group_name # The name of the dataset group. # @return [String] # # @!attribute [rw] creation_time # When the dataset group was created. # @return [Time] # # @!attribute [rw] last_modification_time # When the dataset group was created or last updated from a call to # the UpdateDatasetGroup operation. While the dataset group is being # updated, `LastModificationTime` is the current time of the # `ListDatasetGroups` call. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetGroupSummary AWS API Documentation # class DatasetGroupSummary < Struct.new( :dataset_group_arn, :dataset_group_name, :creation_time, :last_modification_time) include Aws::Structure end # Provides a summary of the dataset import job properties used in the # ListDatasetImportJobs operation. To get the complete set of # properties, call the DescribeDatasetImportJob operation, and provide # the `DatasetImportJobArn`. # # @!attribute [rw] dataset_import_job_arn # The Amazon Resource Name (ARN) of the dataset import job. # @return [String] # # @!attribute [rw] dataset_import_job_name # The name of the dataset import job. # @return [String] # # @!attribute [rw] data_source # The location of the training data to import and an AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to # access the data. The training data must be stored in an Amazon S3 # bucket. # # If encryption is used, `DataSource` includes an AWS Key Management # Service (KMS) key. # @return [Types::DataSource] # # @!attribute [rw] status # The status of the dataset import job. The status is reflected in the # status of the dataset. For example, when the import job status is # `CREATE_IN_PROGRESS`, the status of the dataset is # `UPDATE_IN_PROGRESS`. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # @return [String] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] creation_time # When the dataset import job was created. # @return [Time] # # @!attribute [rw] last_modification_time # The last time that the dataset was modified. The time depends on the # status of the job, as follows: # # * `CREATE_PENDING` - The same time as `CreationTime`. # # * `CREATE_IN_PROGRESS` - The current timestamp. # # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetImportJobSummary AWS API Documentation # class DatasetImportJobSummary < Struct.new( :dataset_import_job_arn, :dataset_import_job_name, :data_source, :status, :message, :creation_time, :last_modification_time) include Aws::Structure end # Provides a summary of the dataset properties used in the ListDatasets # operation. To get the complete set of properties, call the # DescribeDataset operation, and provide the `DatasetArn`. # # @!attribute [rw] dataset_arn # The Amazon Resource Name (ARN) of the dataset. # @return [String] # # @!attribute [rw] dataset_name # The name of the dataset. # @return [String] # # @!attribute [rw] dataset_type # The dataset type. # @return [String] # # @!attribute [rw] domain # The domain associated with the dataset. # @return [String] # # @!attribute [rw] creation_time # When the dataset was created. # @return [Time] # # @!attribute [rw] last_modification_time # When you create a dataset, `LastModificationTime` is the same as # `CreationTime`. While data is being imported to the dataset, # `LastModificationTime` is the current time of the `ListDatasets` # call. After a CreateDatasetImportJob operation has finished, # `LastModificationTime` is when the import job completed or failed. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DatasetSummary AWS API Documentation # class DatasetSummary < Struct.new( :dataset_arn, :dataset_name, :dataset_type, :domain, :creation_time, :last_modification_time) include Aws::Structure end # @note When making an API call, you may pass DeleteDatasetGroupRequest # data as a hash: # # { # dataset_group_arn: "Arn", # required # } # # @!attribute [rw] dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group to delete. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteDatasetGroupRequest AWS API Documentation # class DeleteDatasetGroupRequest < Struct.new( :dataset_group_arn) include Aws::Structure end # @note When making an API call, you may pass DeleteDatasetImportJobRequest # data as a hash: # # { # dataset_import_job_arn: "Arn", # required # } # # @!attribute [rw] dataset_import_job_arn # The Amazon Resource Name (ARN) of the dataset import job to delete. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteDatasetImportJobRequest AWS API Documentation # class DeleteDatasetImportJobRequest < Struct.new( :dataset_import_job_arn) include Aws::Structure end # @note When making an API call, you may pass DeleteDatasetRequest # data as a hash: # # { # dataset_arn: "Arn", # required # } # # @!attribute [rw] dataset_arn # The Amazon Resource Name (ARN) of the dataset to delete. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteDatasetRequest AWS API Documentation # class DeleteDatasetRequest < Struct.new( :dataset_arn) include Aws::Structure end # @note When making an API call, you may pass DeleteForecastExportJobRequest # data as a hash: # # { # forecast_export_job_arn: "Arn", # required # } # # @!attribute [rw] forecast_export_job_arn # The Amazon Resource Name (ARN) of the forecast export job to delete. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteForecastExportJobRequest AWS API Documentation # class DeleteForecastExportJobRequest < Struct.new( :forecast_export_job_arn) include Aws::Structure end # @note When making an API call, you may pass DeleteForecastRequest # data as a hash: # # { # forecast_arn: "Arn", # required # } # # @!attribute [rw] forecast_arn # The Amazon Resource Name (ARN) of the forecast to delete. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeleteForecastRequest AWS API Documentation # class DeleteForecastRequest < Struct.new( :forecast_arn) include Aws::Structure end # @note When making an API call, you may pass DeletePredictorRequest # data as a hash: # # { # predictor_arn: "Arn", # required # } # # @!attribute [rw] predictor_arn # The Amazon Resource Name (ARN) of the predictor to delete. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DeletePredictorRequest AWS API Documentation # class DeletePredictorRequest < Struct.new( :predictor_arn) include Aws::Structure end # @note When making an API call, you may pass DescribeDatasetGroupRequest # data as a hash: # # { # dataset_group_arn: "Arn", # required # } # # @!attribute [rw] dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetGroupRequest AWS API Documentation # class DescribeDatasetGroupRequest < Struct.new( :dataset_group_arn) include Aws::Structure end # @!attribute [rw] dataset_group_name # The name of the dataset group. # @return [String] # # @!attribute [rw] dataset_group_arn # The ARN of the dataset group. # @return [String] # # @!attribute [rw] dataset_arns # An array of Amazon Resource Names (ARNs) of the datasets contained # in the dataset group. # @return [Array] # # @!attribute [rw] domain # The domain associated with the dataset group. # @return [String] # # @!attribute [rw] status # The status of the dataset group. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED` # # The `UPDATE` states apply when you call the UpdateDatasetGroup # operation. # # The `Status` of the dataset group must be `ACTIVE` before you can # use the dataset group to create a predictor. # # # @return [String] # # @!attribute [rw] creation_time # When the dataset group was created. # @return [Time] # # @!attribute [rw] last_modification_time # When the dataset group was created or last updated from a call to # the UpdateDatasetGroup operation. While the dataset group is being # updated, `LastModificationTime` is the current time of the # `DescribeDatasetGroup` call. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetGroupResponse AWS API Documentation # class DescribeDatasetGroupResponse < Struct.new( :dataset_group_name, :dataset_group_arn, :dataset_arns, :domain, :status, :creation_time, :last_modification_time) include Aws::Structure end # @note When making an API call, you may pass DescribeDatasetImportJobRequest # data as a hash: # # { # dataset_import_job_arn: "Arn", # required # } # # @!attribute [rw] dataset_import_job_arn # The Amazon Resource Name (ARN) of the dataset import job. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetImportJobRequest AWS API Documentation # class DescribeDatasetImportJobRequest < Struct.new( :dataset_import_job_arn) include Aws::Structure end # @!attribute [rw] dataset_import_job_name # The name of the dataset import job. # @return [String] # # @!attribute [rw] dataset_import_job_arn # The ARN of the dataset import job. # @return [String] # # @!attribute [rw] dataset_arn # The Amazon Resource Name (ARN) of the dataset that the training data # was imported to. # @return [String] # # @!attribute [rw] timestamp_format # The format of timestamps in the dataset. The format that you specify # depends on the `DataFrequency` specified when the dataset was # created. The following formats are supported # # * "yyyy-MM-dd" # # For the following data frequencies: Y, M, W, and D # # * "yyyy-MM-dd HH:mm:ss" # # For the following data frequencies: H, 30min, 15min, and 1min; and # optionally, for: Y, M, W, and D # @return [String] # # @!attribute [rw] data_source # The location of the training data to import and an AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to # access the data. # # If encryption is used, `DataSource` includes an AWS Key Management # Service (KMS) key. # @return [Types::DataSource] # # @!attribute [rw] field_statistics # Statistical information about each field in the input data. # @return [Hash] # # @!attribute [rw] data_size # The size of the dataset in gigabytes (GB) after the import job has # finished. # @return [Float] # # @!attribute [rw] status # The status of the dataset import job. The status is reflected in the # status of the dataset. For example, when the import job status is # `CREATE_IN_PROGRESS`, the status of the dataset is # `UPDATE_IN_PROGRESS`. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # @return [String] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] creation_time # When the dataset import job was created. # @return [Time] # # @!attribute [rw] last_modification_time # The last time that the dataset was modified. The time depends on the # status of the job, as follows: # # * `CREATE_PENDING` - The same time as `CreationTime`. # # * `CREATE_IN_PROGRESS` - The current timestamp. # # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetImportJobResponse AWS API Documentation # class DescribeDatasetImportJobResponse < Struct.new( :dataset_import_job_name, :dataset_import_job_arn, :dataset_arn, :timestamp_format, :data_source, :field_statistics, :data_size, :status, :message, :creation_time, :last_modification_time) include Aws::Structure end # @note When making an API call, you may pass DescribeDatasetRequest # data as a hash: # # { # dataset_arn: "Arn", # required # } # # @!attribute [rw] dataset_arn # The Amazon Resource Name (ARN) of the dataset. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetRequest AWS API Documentation # class DescribeDatasetRequest < Struct.new( :dataset_arn) include Aws::Structure end # @!attribute [rw] dataset_arn # The Amazon Resource Name (ARN) of the dataset. # @return [String] # # @!attribute [rw] dataset_name # The name of the dataset. # @return [String] # # @!attribute [rw] domain # The domain associated with the dataset. # @return [String] # # @!attribute [rw] dataset_type # The dataset type. # @return [String] # # @!attribute [rw] data_frequency # The frequency of data collection. # # Valid intervals are Y (Year), M (Month), W (Week), D (Day), H # (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), # 5min (5 minutes), and 1min (1 minute). For example, "M" indicates # every month and "30min" indicates every 30 minutes. # @return [String] # # @!attribute [rw] schema # An array of `SchemaAttribute` objects that specify the dataset # fields. Each `SchemaAttribute` specifies the name and data type of a # field. # @return [Types::Schema] # # @!attribute [rw] encryption_config # The AWS Key Management Service (KMS) key and the AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to # access the key. # @return [Types::EncryptionConfig] # # @!attribute [rw] status # The status of the dataset. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED` # # The `UPDATE` states apply while data is imported to the dataset from # a call to the CreateDatasetImportJob operation and reflect the # status of the dataset import job. For example, when the import job # status is `CREATE_IN_PROGRESS`, the status of the dataset is # `UPDATE_IN_PROGRESS`. # # The `Status` of the dataset must be `ACTIVE` before you can import # training data. # # # @return [String] # # @!attribute [rw] creation_time # When the dataset was created. # @return [Time] # # @!attribute [rw] last_modification_time # When you create a dataset, `LastModificationTime` is the same as # `CreationTime`. While data is being imported to the dataset, # `LastModificationTime` is the current time of the `DescribeDataset` # call. After a CreateDatasetImportJob operation has finished, # `LastModificationTime` is when the import job completed or failed. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeDatasetResponse AWS API Documentation # class DescribeDatasetResponse < Struct.new( :dataset_arn, :dataset_name, :domain, :dataset_type, :data_frequency, :schema, :encryption_config, :status, :creation_time, :last_modification_time) include Aws::Structure end # @note When making an API call, you may pass DescribeForecastExportJobRequest # data as a hash: # # { # forecast_export_job_arn: "Arn", # required # } # # @!attribute [rw] forecast_export_job_arn # The Amazon Resource Name (ARN) of the forecast export job. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeForecastExportJobRequest AWS API Documentation # class DescribeForecastExportJobRequest < Struct.new( :forecast_export_job_arn) include Aws::Structure end # @!attribute [rw] forecast_export_job_arn # The ARN of the forecast export job. # @return [String] # # @!attribute [rw] forecast_export_job_name # The name of the forecast export job. # @return [String] # # @!attribute [rw] forecast_arn # The Amazon Resource Name (ARN) of the exported forecast. # @return [String] # # @!attribute [rw] destination # The path to the Amazon Simple Storage Service (Amazon S3) bucket # where the forecast is exported. # @return [Types::DataDestination] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] status # The status of the forecast export job. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # The `Status` of the forecast export job must be `ACTIVE` before you # can access the forecast in your S3 bucket. # # # @return [String] # # @!attribute [rw] creation_time # When the forecast export job was created. # @return [Time] # # @!attribute [rw] last_modification_time # When the last successful export job finished. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeForecastExportJobResponse AWS API Documentation # class DescribeForecastExportJobResponse < Struct.new( :forecast_export_job_arn, :forecast_export_job_name, :forecast_arn, :destination, :message, :status, :creation_time, :last_modification_time) include Aws::Structure end # @note When making an API call, you may pass DescribeForecastRequest # data as a hash: # # { # forecast_arn: "Arn", # required # } # # @!attribute [rw] forecast_arn # The Amazon Resource Name (ARN) of the forecast. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeForecastRequest AWS API Documentation # class DescribeForecastRequest < Struct.new( :forecast_arn) include Aws::Structure end # @!attribute [rw] forecast_arn # The forecast ARN as specified in the request. # @return [String] # # @!attribute [rw] forecast_name # The name of the forecast. # @return [String] # # @!attribute [rw] forecast_types # The quantiles at which proababilistic forecasts were generated. # @return [Array] # # @!attribute [rw] predictor_arn # The ARN of the predictor used to generate the forecast. # @return [String] # # @!attribute [rw] dataset_group_arn # The ARN of the dataset group that provided the data used to train # the predictor. # @return [String] # # @!attribute [rw] status # The status of the forecast. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # The `Status` of the forecast must be `ACTIVE` before you can query # or export the forecast. # # # @return [String] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] creation_time # When the forecast creation task was created. # @return [Time] # # @!attribute [rw] last_modification_time # Initially, the same as `CreationTime` (status is `CREATE_PENDING`). # Updated when inference (creating the forecast) starts (status # changed to `CREATE_IN_PROGRESS`), and when inference is complete # (status changed to `ACTIVE`) or fails (status changed to # `CREATE_FAILED`). # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribeForecastResponse AWS API Documentation # class DescribeForecastResponse < Struct.new( :forecast_arn, :forecast_name, :forecast_types, :predictor_arn, :dataset_group_arn, :status, :message, :creation_time, :last_modification_time) include Aws::Structure end # @note When making an API call, you may pass DescribePredictorRequest # data as a hash: # # { # predictor_arn: "Arn", # required # } # # @!attribute [rw] predictor_arn # The Amazon Resource Name (ARN) of the predictor that you want # information about. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorRequest AWS API Documentation # class DescribePredictorRequest < Struct.new( :predictor_arn) include Aws::Structure end # @!attribute [rw] predictor_arn # The ARN of the predictor. # @return [String] # # @!attribute [rw] predictor_name # The name of the predictor. # @return [String] # # @!attribute [rw] algorithm_arn # The Amazon Resource Name (ARN) of the algorithm used for model # training. # @return [String] # # @!attribute [rw] forecast_horizon # The number of time-steps of the forecast. The forecast horizon is # also called the prediction length. # @return [Integer] # # @!attribute [rw] perform_auto_ml # Whether the predictor is set to perform AutoML. # @return [Boolean] # # @!attribute [rw] perform_hpo # Whether the predictor is set to perform hyperparameter optimization # (HPO). # @return [Boolean] # # @!attribute [rw] training_parameters # The default training parameters or overrides selected during model # training. If using the AutoML algorithm or if HPO is turned on while # using the DeepAR+ algorithms, the optimized values for the chosen # hyperparameters are returned. For more information, see # aws-forecast-choosing-recipes. # @return [Hash] # # @!attribute [rw] evaluation_parameters # Used to override the default evaluation parameters of the specified # algorithm. Amazon Forecast evaluates a predictor by splitting a # dataset into training data and testing data. The evaluation # parameters define how to perform the split and the number of # iterations. # @return [Types::EvaluationParameters] # # @!attribute [rw] hpo_config # The hyperparameter override values for the algorithm. # @return [Types::HyperParameterTuningJobConfig] # # @!attribute [rw] input_data_config # Describes the dataset group that contains the data to use to train # the predictor. # @return [Types::InputDataConfig] # # @!attribute [rw] featurization_config # The featurization configuration. # @return [Types::FeaturizationConfig] # # @!attribute [rw] encryption_config # An AWS Key Management Service (KMS) key and the AWS Identity and # Access Management (IAM) role that Amazon Forecast can assume to # access the key. # @return [Types::EncryptionConfig] # # @!attribute [rw] predictor_execution_details # Details on the the status and results of the backtests performed to # evaluate the accuracy of the predictor. You specify the number of # backtests to perform when you call the operation. # @return [Types::PredictorExecutionDetails] # # @!attribute [rw] dataset_import_job_arns # An array of the ARNs of the dataset import jobs used to import # training data for the predictor. # @return [Array] # # @!attribute [rw] auto_ml_algorithm_arns # When `PerformAutoML` is specified, the ARN of the chosen algorithm. # @return [Array] # # @!attribute [rw] status # The status of the predictor. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED` # # The `Status` of the predictor must be `ACTIVE` before you can use # the predictor to create a forecast. # # # @return [String] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] creation_time # When the model training task was created. # @return [Time] # # @!attribute [rw] last_modification_time # Initially, the same as `CreationTime` (when the status is # `CREATE_PENDING`). This value is updated when training starts (when # the status changes to `CREATE_IN_PROGRESS`), and when training has # completed (when the status changes to `ACTIVE`) or fails (when the # status changes to `CREATE_FAILED`). # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorResponse AWS API Documentation # class DescribePredictorResponse < Struct.new( :predictor_arn, :predictor_name, :algorithm_arn, :forecast_horizon, :perform_auto_ml, :perform_hpo, :training_parameters, :evaluation_parameters, :hpo_config, :input_data_config, :featurization_config, :encryption_config, :predictor_execution_details, :dataset_import_job_arns, :auto_ml_algorithm_arns, :status, :message, :creation_time, :last_modification_time) include Aws::Structure end # An AWS Key Management Service (KMS) key and an AWS Identity and Access # Management (IAM) role that Amazon Forecast can assume to access the # key. You can specify this optional object in the CreateDataset and # CreatePredictor requests. # # @note When making an API call, you may pass EncryptionConfig # data as a hash: # # { # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # required # } # # @!attribute [rw] role_arn # The ARN of the IAM role that Amazon Forecast can assume to access # the AWS KMS key. # # Passing a role across AWS accounts is not allowed. If you pass a # role that isn't in your account, you get an `InvalidInputException` # error. # @return [String] # # @!attribute [rw] kms_key_arn # The Amazon Resource Name (ARN) of the KMS key. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EncryptionConfig AWS API Documentation # class EncryptionConfig < Struct.new( :role_arn, :kms_key_arn) include Aws::Structure end # Parameters that define how to split a dataset into training data and # testing data, and the number of iterations to perform. These # parameters are specified in the predefined algorithms but you can # override them in the CreatePredictor request. # # @note When making an API call, you may pass EvaluationParameters # data as a hash: # # { # number_of_backtest_windows: 1, # back_test_window_offset: 1, # } # # @!attribute [rw] number_of_backtest_windows # The number of times to split the input data. The default is 1. Valid # values are 1 through 5. # @return [Integer] # # @!attribute [rw] back_test_window_offset # The point from the end of the dataset where you want to split the # data for model training and testing (evaluation). Specify the value # as the number of data points. The default is the value of the # forecast horizon. `BackTestWindowOffset` can be used to mimic a past # virtual forecast start date. This value must be greater than or # equal to the forecast horizon and less than half of the # TARGET\_TIME\_SERIES dataset length. # # `ForecastHorizon` <= `BackTestWindowOffset` < 1/2 * # TARGET\_TIME\_SERIES dataset length # @return [Integer] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EvaluationParameters AWS API Documentation # class EvaluationParameters < Struct.new( :number_of_backtest_windows, :back_test_window_offset) include Aws::Structure end # The results of evaluating an algorithm. Returned as part of the # GetAccuracyMetrics response. # # @!attribute [rw] algorithm_arn # The Amazon Resource Name (ARN) of the algorithm that was evaluated. # @return [String] # # @!attribute [rw] test_windows # The array of test windows used for evaluating the algorithm. The # `NumberOfBacktestWindows` from the EvaluationParameters object # determines the number of windows in the array. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/EvaluationResult AWS API Documentation # class EvaluationResult < Struct.new( :algorithm_arn, :test_windows) include Aws::Structure end # Provides featurization (transformation) information for a dataset # field. This object is part of the FeaturizationConfig object. # # For example: # # `\{` # # `"AttributeName": "demand",` # # `FeaturizationPipeline [ \{` # # `"FeaturizationMethodName": "filling",` # # `"FeaturizationMethodParameters": \{"aggregation": "avg", "backfill": # "nan"\}` # # `\} ]` # # `\}` # # @note When making an API call, you may pass Featurization # data as a hash: # # { # attribute_name: "Name", # required # featurization_pipeline: [ # { # featurization_method_name: "filling", # required, accepts filling # featurization_method_parameters: { # "ParameterKey" => "ParameterValue", # }, # }, # ], # } # # @!attribute [rw] attribute_name # The name of the schema attribute that specifies the data field to be # featurized. Only the `target` field of the `TARGET_TIME_SERIES` # dataset type is supported. For example, for the `RETAIL` domain, the # target is `demand`, and for the `CUSTOM` domain, the target is # `target_value`. # @return [String] # # @!attribute [rw] featurization_pipeline # An array of one `FeaturizationMethod` object that specifies the # feature transformation method. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Featurization AWS API Documentation # class Featurization < Struct.new( :attribute_name, :featurization_pipeline) include Aws::Structure end # In a CreatePredictor operation, the specified algorithm trains a model # using the specified dataset group. You can optionally tell the # operation to modify data fields prior to training a model. These # modifications are referred to as *featurization*. # # You define featurization using the `FeaturizationConfig` object. You # specify an array of transformations, one for each field that you want # to featurize. You then include the `FeaturizationConfig` object in # your `CreatePredictor` request. Amazon Forecast applies the # featurization to the `TARGET_TIME_SERIES` dataset before model # training. # # You can create multiple featurization configurations. For example, you # might call the `CreatePredictor` operation twice by specifying # different featurization configurations. # # @note When making an API call, you may pass FeaturizationConfig # data as a hash: # # { # forecast_frequency: "Frequency", # required # forecast_dimensions: ["Name"], # featurizations: [ # { # attribute_name: "Name", # required # featurization_pipeline: [ # { # featurization_method_name: "filling", # required, accepts filling # featurization_method_parameters: { # "ParameterKey" => "ParameterValue", # }, # }, # ], # }, # ], # } # # @!attribute [rw] forecast_frequency # The frequency of predictions in a forecast. # # Valid intervals are Y (Year), M (Month), W (Week), D (Day), H # (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), # 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates # every year and "5min" indicates every five minutes. # # The frequency must be greater than or equal to the # TARGET\_TIME\_SERIES dataset frequency. # # When a RELATED\_TIME\_SERIES dataset is provided, the frequency must # be equal to the RELATED\_TIME\_SERIES dataset frequency. # @return [String] # # @!attribute [rw] forecast_dimensions # An array of dimension (field) names that specify how to group the # generated forecast. # # For example, suppose that you are generating a forecast for item # sales across all of your stores, and your dataset contains a # `store_id` field. If you want the sales forecast for each item by # store, you would specify `store_id` as the dimension. # # All forecast dimensions specified in the `TARGET_TIME_SERIES` # dataset don't need to be specified in the `CreatePredictor` # request. All forecast dimensions specified in the # `RELATED_TIME_SERIES` dataset must be specified in the # `CreatePredictor` request. # @return [Array] # # @!attribute [rw] featurizations # An array of featurization (transformation) information for the # fields of a dataset. Only a single featurization is supported. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationConfig AWS API Documentation # class FeaturizationConfig < Struct.new( :forecast_frequency, :forecast_dimensions, :featurizations) include Aws::Structure end # Provides information about the method that featurizes (transforms) a # dataset field. The method is part of the `FeaturizationPipeline` of # the Featurization object. If you don't specify # `FeaturizationMethodParameters`, Amazon Forecast uses default # parameters. # # The following is an example of how you specify a `FeaturizationMethod` # object. # # `\{` # # `"FeaturizationMethodName": "filling",` # # `"FeaturizationMethodParameters": \{"aggregation": "avg", "backfill": # "nan"\}` # # `\}` # # @note When making an API call, you may pass FeaturizationMethod # data as a hash: # # { # featurization_method_name: "filling", # required, accepts filling # featurization_method_parameters: { # "ParameterKey" => "ParameterValue", # }, # } # # @!attribute [rw] featurization_method_name # The name of the method. The "filling" method is the only supported # method. # @return [String] # # @!attribute [rw] featurization_method_parameters # The method parameters (key-value pairs). Specify these parameters to # override the default values. The following list shows the parameters # and their valid values. Bold signifies the default value. # # * `aggregation`\: **sum**, `avg`, `first`, `min`, `max` # # * `frontfill`\: **none** # # * `middlefill`\: **zero**, `nan` (not a number) # # * `backfill`\: **zero**, `nan` # @return [Hash] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationMethod AWS API Documentation # class FeaturizationMethod < Struct.new( :featurization_method_name, :featurization_method_parameters) include Aws::Structure end # Describes a filter for choosing a subset of objects. Each filter # consists of a condition and a match statement. The condition is either # `IS` or `IS_NOT`, which specifies whether to include or exclude the # objects that match the statement, respectively. The match statement # consists of a key and a value. # # @note When making an API call, you may pass Filter # data as a hash: # # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # } # # @!attribute [rw] key # The name of the parameter to filter on. # @return [String] # # @!attribute [rw] value # The value to match. # @return [String] # # @!attribute [rw] condition # The condition to apply. To include the objects that match the # statement, specify `IS`. To exclude matching objects, specify # `IS_NOT`. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Filter AWS API Documentation # class Filter < Struct.new( :key, :value, :condition) include Aws::Structure end # Provides a summary of the forecast export job properties used in the # ListForecastExportJobs operation. To get the complete set of # properties, call the DescribeForecastExportJob operation, and provide # the listed `ForecastExportJobArn`. # # @!attribute [rw] forecast_export_job_arn # The Amazon Resource Name (ARN) of the forecast export job. # @return [String] # # @!attribute [rw] forecast_export_job_name # The name of the forecast export job. # @return [String] # # @!attribute [rw] destination # The path to the Amazon Simple Storage Service (Amazon S3) bucket # where the forecast is exported. # @return [Types::DataDestination] # # @!attribute [rw] status # The status of the forecast export job. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # The `Status` of the forecast export job must be `ACTIVE` before you # can access the forecast in your S3 bucket. # # # @return [String] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] creation_time # When the forecast export job was created. # @return [Time] # # @!attribute [rw] last_modification_time # When the last successful export job finished. # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ForecastExportJobSummary AWS API Documentation # class ForecastExportJobSummary < Struct.new( :forecast_export_job_arn, :forecast_export_job_name, :destination, :status, :message, :creation_time, :last_modification_time) include Aws::Structure end # Provides a summary of the forecast properties used in the # ListForecasts operation. To get the complete set of properties, call # the DescribeForecast operation, and provide the `ForecastArn` that is # listed in the summary. # # @!attribute [rw] forecast_arn # The ARN of the forecast. # @return [String] # # @!attribute [rw] forecast_name # The name of the forecast. # @return [String] # # @!attribute [rw] predictor_arn # The ARN of the predictor used to generate the forecast. # @return [String] # # @!attribute [rw] dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group that provided # the data used to train the predictor. # @return [String] # # @!attribute [rw] status # The status of the forecast. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # The `Status` of the forecast must be `ACTIVE` before you can query # or export the forecast. # # # @return [String] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] creation_time # When the forecast creation task was created. # @return [Time] # # @!attribute [rw] last_modification_time # Initially, the same as `CreationTime` (status is `CREATE_PENDING`). # Updated when inference (creating the forecast) starts (status # changed to `CREATE_IN_PROGRESS`), and when inference is complete # (status changed to `ACTIVE`) or fails (status changed to # `CREATE_FAILED`). # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ForecastSummary AWS API Documentation # class ForecastSummary < Struct.new( :forecast_arn, :forecast_name, :predictor_arn, :dataset_group_arn, :status, :message, :creation_time, :last_modification_time) include Aws::Structure end # @note When making an API call, you may pass GetAccuracyMetricsRequest # data as a hash: # # { # predictor_arn: "Arn", # required # } # # @!attribute [rw] predictor_arn # The Amazon Resource Name (ARN) of the predictor to get metrics for. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsRequest AWS API Documentation # class GetAccuracyMetricsRequest < Struct.new( :predictor_arn) include Aws::Structure end # @!attribute [rw] predictor_evaluation_results # An array of results from evaluating the predictor. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation # class GetAccuracyMetricsResponse < Struct.new( :predictor_evaluation_results) include Aws::Structure end # Configuration information for a hyperparameter tuning job. You specify # this object in the CreatePredictor request. # # A *hyperparameter* is a parameter that governs the model training # process. You set hyperparameters before training starts, unlike model # parameters, which are determined during training. The values of the # hyperparameters effect which values are chosen for the model # parameters. # # In a *hyperparameter tuning job*, Amazon Forecast chooses the set of # hyperparameter values that optimize a specified metric. Forecast # accomplishes this by running many training jobs over a range of # hyperparameter values. The optimum set of values depends on the # algorithm, the training data, and the specified metric objective. # # @note When making an API call, you may pass HyperParameterTuningJobConfig # data as a hash: # # { # parameter_ranges: { # categorical_parameter_ranges: [ # { # name: "Name", # required # values: ["Value"], # required # }, # ], # continuous_parameter_ranges: [ # { # name: "Name", # required # max_value: 1.0, # required # min_value: 1.0, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # integer_parameter_ranges: [ # { # name: "Name", # required # max_value: 1, # required # min_value: 1, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # }, # } # # @!attribute [rw] parameter_ranges # Specifies the ranges of valid values for the hyperparameters. # @return [Types::ParameterRanges] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/HyperParameterTuningJobConfig AWS API Documentation # class HyperParameterTuningJobConfig < Struct.new( :parameter_ranges) include Aws::Structure end # The data used to train a predictor. The data includes a dataset group # and any supplementary features. You specify this object in the # CreatePredictor request. # # @note When making an API call, you may pass InputDataConfig # data as a hash: # # { # dataset_group_arn: "Arn", # required # supplementary_features: [ # { # name: "Name", # required # value: "Value", # required # }, # ], # } # # @!attribute [rw] dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group. # @return [String] # # @!attribute [rw] supplementary_features # An array of supplementary features. The only supported feature is a # holiday calendar. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/InputDataConfig AWS API Documentation # class InputDataConfig < Struct.new( :dataset_group_arn, :supplementary_features) include Aws::Structure end # Specifies an integer hyperparameter and it's range of tunable values. # This object is part of the ParameterRanges object. # # @note When making an API call, you may pass IntegerParameterRange # data as a hash: # # { # name: "Name", # required # max_value: 1, # required # min_value: 1, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # } # # @!attribute [rw] name # The name of the hyperparameter to tune. # @return [String] # # @!attribute [rw] max_value # The maximum tunable value of the hyperparameter. # @return [Integer] # # @!attribute [rw] min_value # The minimum tunable value of the hyperparameter. # @return [Integer] # # @!attribute [rw] scaling_type # The scale that hyperparameter tuning uses to search the # hyperparameter range. Valid values: # # Auto # # : Amazon Forecast hyperparameter tuning chooses the best scale for # the hyperparameter. # # Linear # # : Hyperparameter tuning searches the values in the hyperparameter # range by using a linear scale. # # Logarithmic # # : Hyperparameter tuning searches the values in the hyperparameter # range by using a logarithmic scale. # # Logarithmic scaling works only for ranges that have values greater # than 0. # # ReverseLogarithmic # # : Not supported for `IntegerParameterRange`. # # Reverse logarithmic scaling works only for ranges that are # entirely within the range 0 <= x < 1.0. # # For information about choosing a hyperparameter scale, see # [Hyperparameter Scaling][1]. One of the following values: # # # # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/IntegerParameterRange AWS API Documentation # class IntegerParameterRange < Struct.new( :name, :max_value, :min_value, :scaling_type) include Aws::Structure end # We can't process the request because it includes an invalid value or # a value that exceeds the valid range. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/InvalidInputException AWS API Documentation # class InvalidInputException < Struct.new( :message) include Aws::Structure end # The token is not valid. Tokens expire after 24 hours. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/InvalidNextTokenException AWS API Documentation # class InvalidNextTokenException < Struct.new( :message) include Aws::Structure end # The limit on the number of resources per account has been exceeded. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/LimitExceededException AWS API Documentation # class LimitExceededException < Struct.new( :message) include Aws::Structure end # @note When making an API call, you may pass ListDatasetGroupsRequest # data as a hash: # # { # next_token: "NextToken", # max_results: 1, # } # # @!attribute [rw] next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # @return [String] # # @!attribute [rw] max_results # The number of items to return in the response. # @return [Integer] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetGroupsRequest AWS API Documentation # class ListDatasetGroupsRequest < Struct.new( :next_token, :max_results) include Aws::Structure end # @!attribute [rw] dataset_groups # An array of objects that summarize each dataset group's properties. # @return [Array] # # @!attribute [rw] next_token # If the response is truncated, Amazon Forecast returns this token. To # retrieve the next set of results, use the token in the next request. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetGroupsResponse AWS API Documentation # class ListDatasetGroupsResponse < Struct.new( :dataset_groups, :next_token) include Aws::Structure end # @note When making an API call, you may pass ListDatasetImportJobsRequest # data as a hash: # # { # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # } # # @!attribute [rw] next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # @return [String] # # @!attribute [rw] max_results # The number of items to return in the response. # @return [Integer] # # @!attribute [rw] filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the datasets that match the # statement from the list, respectively. The match statement consists # of a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the datasets that match the statement, # specify `IS`. To exclude matching datasets, specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `DatasetArn` and `Status`. # # * `Value` - The value to match. # # For example, to list all dataset import jobs whose status is ACTIVE, # you specify the following filter: # # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": # "ACTIVE" \} ]` # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetImportJobsRequest AWS API Documentation # class ListDatasetImportJobsRequest < Struct.new( :next_token, :max_results, :filters) include Aws::Structure end # @!attribute [rw] dataset_import_jobs # An array of objects that summarize each dataset import job's # properties. # @return [Array] # # @!attribute [rw] next_token # If the response is truncated, Amazon Forecast returns this token. To # retrieve the next set of results, use the token in the next request. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetImportJobsResponse AWS API Documentation # class ListDatasetImportJobsResponse < Struct.new( :dataset_import_jobs, :next_token) include Aws::Structure end # @note When making an API call, you may pass ListDatasetsRequest # data as a hash: # # { # next_token: "NextToken", # max_results: 1, # } # # @!attribute [rw] next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # @return [String] # # @!attribute [rw] max_results # The number of items to return in the response. # @return [Integer] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetsRequest AWS API Documentation # class ListDatasetsRequest < Struct.new( :next_token, :max_results) include Aws::Structure end # @!attribute [rw] datasets # An array of objects that summarize each dataset's properties. # @return [Array] # # @!attribute [rw] next_token # If the response is truncated, Amazon Forecast returns this token. To # retrieve the next set of results, use the token in the next request. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListDatasetsResponse AWS API Documentation # class ListDatasetsResponse < Struct.new( :datasets, :next_token) include Aws::Structure end # @note When making an API call, you may pass ListForecastExportJobsRequest # data as a hash: # # { # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # } # # @!attribute [rw] next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # @return [String] # # @!attribute [rw] max_results # The number of items to return in the response. # @return [Integer] # # @!attribute [rw] filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the forecast export jobs # that match the statement from the list, respectively. The match # statement consists of a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the forecast export jobs that match the # statement, specify `IS`. To exclude matching forecast export jobs, # specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `ForecastArn` and `Status`. # # * `Value` - The value to match. # # For example, to list all jobs that export a forecast named # *electricityforecast*, specify the following filter: # # `"Filters": [ \{ "Condition": "IS", "Key": "ForecastArn", "Value": # "arn:aws:forecast:us-west-2::forecast/electricityforecast" # \} ]` # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastExportJobsRequest AWS API Documentation # class ListForecastExportJobsRequest < Struct.new( :next_token, :max_results, :filters) include Aws::Structure end # @!attribute [rw] forecast_export_jobs # An array of objects that summarize each export job's properties. # @return [Array] # # @!attribute [rw] next_token # If the response is truncated, Amazon Forecast returns this token. To # retrieve the next set of results, use the token in the next request. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastExportJobsResponse AWS API Documentation # class ListForecastExportJobsResponse < Struct.new( :forecast_export_jobs, :next_token) include Aws::Structure end # @note When making an API call, you may pass ListForecastsRequest # data as a hash: # # { # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # } # # @!attribute [rw] next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # @return [String] # # @!attribute [rw] max_results # The number of items to return in the response. # @return [Integer] # # @!attribute [rw] filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the forecasts that match the # statement from the list, respectively. The match statement consists # of a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the forecasts that match the statement, # specify `IS`. To exclude matching forecasts, specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `DatasetGroupArn`, `PredictorArn`, and `Status`. # # * `Value` - The value to match. # # For example, to list all forecasts whose status is not ACTIVE, you # would specify: # # `"Filters": [ \{ "Condition": "IS_NOT", "Key": "Status", "Value": # "ACTIVE" \} ]` # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastsRequest AWS API Documentation # class ListForecastsRequest < Struct.new( :next_token, :max_results, :filters) include Aws::Structure end # @!attribute [rw] forecasts # An array of objects that summarize each forecast's properties. # @return [Array] # # @!attribute [rw] next_token # If the response is truncated, Amazon Forecast returns this token. To # retrieve the next set of results, use the token in the next request. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListForecastsResponse AWS API Documentation # class ListForecastsResponse < Struct.new( :forecasts, :next_token) include Aws::Structure end # @note When making an API call, you may pass ListPredictorsRequest # data as a hash: # # { # next_token: "NextToken", # max_results: 1, # filters: [ # { # key: "String", # required # value: "Arn", # required # condition: "IS", # required, accepts IS, IS_NOT # }, # ], # } # # @!attribute [rw] next_token # If the result of the previous request was truncated, the response # includes a `NextToken`. To retrieve the next set of results, use the # token in the next request. Tokens expire after 24 hours. # @return [String] # # @!attribute [rw] max_results # The number of items to return in the response. # @return [Integer] # # @!attribute [rw] filters # An array of filters. For each filter, you provide a condition and a # match statement. The condition is either `IS` or `IS_NOT`, which # specifies whether to include or exclude the predictors that match # the statement from the list, respectively. The match statement # consists of a key and a value. # # **Filter properties** # # * `Condition` - The condition to apply. Valid values are `IS` and # `IS_NOT`. To include the predictors that match the statement, # specify `IS`. To exclude matching predictors, specify `IS_NOT`. # # * `Key` - The name of the parameter to filter on. Valid values are # `DatasetGroupArn` and `Status`. # # * `Value` - The value to match. # # For example, to list all predictors whose status is ACTIVE, you # would specify: # # `"Filters": [ \{ "Condition": "IS", "Key": "Status", "Value": # "ACTIVE" \} ]` # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListPredictorsRequest AWS API Documentation # class ListPredictorsRequest < Struct.new( :next_token, :max_results, :filters) include Aws::Structure end # @!attribute [rw] predictors # An array of objects that summarize each predictor's properties. # @return [Array] # # @!attribute [rw] next_token # If the response is truncated, Amazon Forecast returns this token. To # retrieve the next set of results, use the token in the next request. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ListPredictorsResponse AWS API Documentation # class ListPredictorsResponse < Struct.new( :predictors, :next_token) include Aws::Structure end # Provides metrics that are used to evaluate the performance of a # predictor. This object is part of the WindowSummary object. # # @!attribute [rw] rmse # The root mean square error (RMSE). # @return [Float] # # @!attribute [rw] weighted_quantile_losses # An array of weighted quantile losses. Quantiles divide a probability # distribution into regions of equal probability. The distribution in # this case is the loss function. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Metrics AWS API Documentation # class Metrics < Struct.new( :rmse, :weighted_quantile_losses) include Aws::Structure end # Specifies the categorical, continuous, and integer hyperparameters, # and their ranges of tunable values. The range of tunable values # determines which values that a hyperparameter tuning job can choose # for the specified hyperparameter. This object is part of the # HyperParameterTuningJobConfig object. # # @note When making an API call, you may pass ParameterRanges # data as a hash: # # { # categorical_parameter_ranges: [ # { # name: "Name", # required # values: ["Value"], # required # }, # ], # continuous_parameter_ranges: [ # { # name: "Name", # required # max_value: 1.0, # required # min_value: 1.0, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # integer_parameter_ranges: [ # { # name: "Name", # required # max_value: 1, # required # min_value: 1, # required # scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic # }, # ], # } # # @!attribute [rw] categorical_parameter_ranges # Specifies the tunable range for each categorical hyperparameter. # @return [Array] # # @!attribute [rw] continuous_parameter_ranges # Specifies the tunable range for each continuous hyperparameter. # @return [Array] # # @!attribute [rw] integer_parameter_ranges # Specifies the tunable range for each integer hyperparameter. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ParameterRanges AWS API Documentation # class ParameterRanges < Struct.new( :categorical_parameter_ranges, :continuous_parameter_ranges, :integer_parameter_ranges) include Aws::Structure end # The algorithm used to perform a backtest and the status of those # tests. # # @!attribute [rw] algorithm_arn # The ARN of the algorithm used to test the predictor. # @return [String] # # @!attribute [rw] test_windows # An array of test windows used to evaluate the algorithm. The # `NumberOfBacktestWindows` from the object determines the number of # windows in the array. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecution AWS API Documentation # class PredictorExecution < Struct.new( :algorithm_arn, :test_windows) include Aws::Structure end # Contains details on the backtests performed to evaluate the accuracy # of the predictor. The tests are returned in descending order of # accuracy, with the most accurate backtest appearing first. You specify # the number of backtests to perform when you call the operation. # # @!attribute [rw] predictor_executions # An array of the backtests performed to evaluate the accuracy of the # predictor against a particular algorithm. The # `NumberOfBacktestWindows` from the object determines the number of # windows in the array. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorExecutionDetails AWS API Documentation # class PredictorExecutionDetails < Struct.new( :predictor_executions) include Aws::Structure end # Provides a summary of the predictor properties that are used in the # ListPredictors operation. To get the complete set of properties, call # the DescribePredictor operation, and provide the listed # `PredictorArn`. # # @!attribute [rw] predictor_arn # The ARN of the predictor. # @return [String] # # @!attribute [rw] predictor_name # The name of the predictor. # @return [String] # # @!attribute [rw] dataset_group_arn # The Amazon Resource Name (ARN) of the dataset group that contains # the data used to train the predictor. # @return [String] # # @!attribute [rw] status # The status of the predictor. States include: # # * `ACTIVE` # # * `CREATE_PENDING`, `CREATE_IN_PROGRESS`, `CREATE_FAILED` # # * `DELETE_PENDING`, `DELETE_IN_PROGRESS`, `DELETE_FAILED` # # * `UPDATE_PENDING`, `UPDATE_IN_PROGRESS`, `UPDATE_FAILED` # # The `Status` of the predictor must be `ACTIVE` before you can use # the predictor to create a forecast. # # # @return [String] # # @!attribute [rw] message # If an error occurred, an informational message about the error. # @return [String] # # @!attribute [rw] creation_time # When the model training task was created. # @return [Time] # # @!attribute [rw] last_modification_time # Initially, the same as `CreationTime` (status is `CREATE_PENDING`). # Updated when training starts (status changed to # `CREATE_IN_PROGRESS`), and when training is complete (status changed # to `ACTIVE`) or fails (status changed to `CREATE_FAILED`). # @return [Time] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/PredictorSummary AWS API Documentation # class PredictorSummary < Struct.new( :predictor_arn, :predictor_name, :dataset_group_arn, :status, :message, :creation_time, :last_modification_time) include Aws::Structure end # There is already a resource with this name. Try again with a different # name. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ResourceAlreadyExistsException AWS API Documentation # class ResourceAlreadyExistsException < Struct.new( :message) include Aws::Structure end # The specified resource is in use. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ResourceInUseException AWS API Documentation # class ResourceInUseException < Struct.new( :message) include Aws::Structure end # We can't find a resource with that Amazon Resource Name (ARN). Check # the ARN and try again. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ResourceNotFoundException AWS API Documentation # class ResourceNotFoundException < Struct.new( :message) include Aws::Structure end # The path to the file(s) in an Amazon Simple Storage Service (Amazon # S3) bucket, and an AWS Identity and Access Management (IAM) role that # Amazon Forecast can assume to access the file(s). Optionally, includes # an AWS Key Management Service (KMS) key. This object is part of the # DataSource object that is submitted in the CreateDatasetImportJob # request, and part of the DataDestination object that is submitted in # the CreateForecastExportJob request. # # @note When making an API call, you may pass S3Config # data as a hash: # # { # path: "S3Path", # required # role_arn: "Arn", # required # kms_key_arn: "KMSKeyArn", # } # # @!attribute [rw] path # The path to an Amazon Simple Storage Service (Amazon S3) bucket or # file(s) in an Amazon S3 bucket. # @return [String] # # @!attribute [rw] role_arn # The ARN of the AWS Identity and Access Management (IAM) role that # Amazon Forecast can assume to access the Amazon S3 bucket or files. # If you provide a value for the `KMSKeyArn` key, the role must allow # access to the key. # # Passing a role across AWS accounts is not allowed. If you pass a # role that isn't in your account, you get an `InvalidInputException` # error. # @return [String] # # @!attribute [rw] kms_key_arn # The Amazon Resource Name (ARN) of an AWS Key Management Service # (KMS) key. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/S3Config AWS API Documentation # class S3Config < Struct.new( :path, :role_arn, :kms_key_arn) include Aws::Structure end # Defines the fields of a dataset. You specify this object in the # CreateDataset request. # # @note When making an API call, you may pass Schema # data as a hash: # # { # attributes: [ # { # attribute_name: "Name", # attribute_type: "string", # accepts string, integer, float, timestamp # }, # ], # } # # @!attribute [rw] attributes # An array of attributes specifying the name and type of each field in # a dataset. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Schema AWS API Documentation # class Schema < Struct.new( :attributes) include Aws::Structure end # An attribute of a schema, which defines a dataset field. A schema # attribute is required for every field in a dataset. The Schema object # contains an array of `SchemaAttribute` objects. # # @note When making an API call, you may pass SchemaAttribute # data as a hash: # # { # attribute_name: "Name", # attribute_type: "string", # accepts string, integer, float, timestamp # } # # @!attribute [rw] attribute_name # The name of the dataset field. # @return [String] # # @!attribute [rw] attribute_type # The data type of the field. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/SchemaAttribute AWS API Documentation # class SchemaAttribute < Struct.new( :attribute_name, :attribute_type) include Aws::Structure end # Provides statistics for each data field imported into to an Amazon # Forecast dataset with the CreateDatasetImportJob operation. # # @!attribute [rw] count # The number of values in the field. # @return [Integer] # # @!attribute [rw] count_distinct # The number of distinct values in the field. # @return [Integer] # # @!attribute [rw] count_null # The number of null values in the field. # @return [Integer] # # @!attribute [rw] count_nan # The number of NAN (not a number) values in the field. # @return [Integer] # # @!attribute [rw] min # For a numeric field, the minimum value in the field. # @return [String] # # @!attribute [rw] max # For a numeric field, the maximum value in the field. # @return [String] # # @!attribute [rw] avg # For a numeric field, the average value in the field. # @return [Float] # # @!attribute [rw] stddev # For a numeric field, the standard deviation. # @return [Float] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Statistics AWS API Documentation # class Statistics < Struct.new( :count, :count_distinct, :count_null, :count_nan, :min, :max, :avg, :stddev) include Aws::Structure end # Describes a supplementary feature of a dataset group. This object is # part of the InputDataConfig object. # # The only supported feature is a holiday calendar. If you use the # calendar, all data in the datasets should belong to the same country # as the calendar. For the holiday calendar data, see the [Jollyday][1] # web site. # # # # [1]: http://jollyday.sourceforge.net/data.html # # @note When making an API call, you may pass SupplementaryFeature # data as a hash: # # { # name: "Name", # required # value: "Value", # required # } # # @!attribute [rw] name # The name of the feature. This must be "holiday". # @return [String] # # @!attribute [rw] value # One of the following 2 letter country codes: # # * "AU" - AUSTRALIA # # * "DE" - GERMANY # # * "JP" - JAPAN # # * "US" - UNITED\_STATES # # * "UK" - UNITED\_KINGDOM # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/SupplementaryFeature AWS API Documentation # class SupplementaryFeature < Struct.new( :name, :value) include Aws::Structure end # The status, start time, and end time of a backtest, as well as a # failure reason if applicable. # # @!attribute [rw] test_window_start # The time at which the test began. # @return [Time] # # @!attribute [rw] test_window_end # The time at which the test ended. # @return [Time] # # @!attribute [rw] status # The status of the test. Possible status values are: # # * `ACTIVE` # # * `CREATE_IN_PROGRESS` # # * `CREATE_FAILED` # @return [String] # # @!attribute [rw] message # If the test failed, the reason why it failed. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/TestWindowSummary AWS API Documentation # class TestWindowSummary < Struct.new( :test_window_start, :test_window_end, :status, :message) include Aws::Structure end # @note When making an API call, you may pass UpdateDatasetGroupRequest # data as a hash: # # { # dataset_group_arn: "Arn", # required # dataset_arns: ["Arn"], # required # } # # @!attribute [rw] dataset_group_arn # The ARN of the dataset group. # @return [String] # # @!attribute [rw] dataset_arns # An array of the Amazon Resource Names (ARNs) of the datasets to add # to the dataset group. # @return [Array] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/UpdateDatasetGroupRequest AWS API Documentation # class UpdateDatasetGroupRequest < Struct.new( :dataset_group_arn, :dataset_arns) include Aws::Structure end # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/UpdateDatasetGroupResponse AWS API Documentation # class UpdateDatasetGroupResponse < Aws::EmptyStructure; end # The weighted loss value for a quantile. This object is part of the # Metrics object. # # @!attribute [rw] quantile # The quantile. Quantiles divide a probability distribution into # regions of equal probability. For example, if the distribution was # divided into 5 regions of equal probability, the quantiles would be # 0.2, 0.4, 0.6, and 0.8. # @return [Float] # # @!attribute [rw] loss_value # The difference between the predicted value and the actual value over # the quantile, weighted (normalized) by dividing by the sum over all # quantiles. # @return [Float] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/WeightedQuantileLoss AWS API Documentation # class WeightedQuantileLoss < Struct.new( :quantile, :loss_value) include Aws::Structure end # The metrics for a time range within the evaluation portion of a # dataset. This object is part of the EvaluationResult object. # # The `TestWindowStart` and `TestWindowEnd` parameters are determined by # the `BackTestWindowOffset` parameter of the EvaluationParameters # object. # # @!attribute [rw] test_window_start # The timestamp that defines the start of the window. # @return [Time] # # @!attribute [rw] test_window_end # The timestamp that defines the end of the window. # @return [Time] # # @!attribute [rw] item_count # The number of data points within the window. # @return [Integer] # # @!attribute [rw] evaluation_type # The type of evaluation. # # * `SUMMARY` - The average metrics across all windows. # # * `COMPUTED` - The metrics for the specified window. # @return [String] # # @!attribute [rw] metrics # Provides metrics used to evaluate the performance of a predictor. # @return [Types::Metrics] # # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/WindowSummary AWS API Documentation # class WindowSummary < Struct.new( :test_window_start, :test_window_end, :item_count, :evaluation_type, :metrics) include Aws::Structure end end end