Sha256: 25b50bdc72ad9b458046076cb32a4e316f0816b4bce0810a88a19d6a4bdeb4ca

Contents?: true

Size: 878 Bytes

Versions: 6

Compression:

Stored size: 878 Bytes

Contents

require "dnn"
require "dnn/datasets/mnist"
# If you use numo/linalg then please uncomment out.
# require "numo/linalg/autoloader"

include DNN::Models
include DNN::Layers
include DNN::Optimizers
include DNN::Losses
MNIST = DNN::MNIST

x_train, y_train = MNIST.load_train
x_test, y_test = MNIST.load_test

x_train = Numo::SFloat.cast(x_train).reshape(x_train.shape[0], 28, 28)
x_test = Numo::SFloat.cast(x_test).reshape(x_test.shape[0], 28, 28)

x_train /= 255
x_test /= 255

y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat)
y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat)

model = Sequential.new

model << InputLayer.new([28, 28])

model << LSTM.new(200)
model << LSTM.new(200, return_sequences: false)

model << Dense.new(10)

model.setup(Adam.new, SoftmaxCrossEntropy.new)

model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])

Version data entries

6 entries across 6 versions & 1 rubygems

Version Path
ruby-dnn-0.15.1 examples/mnist_lstm_example.rb
ruby-dnn-0.15.0 examples/mnist_lstm_example.rb
ruby-dnn-0.14.3 examples/mnist_lstm_example.rb
ruby-dnn-0.14.2 examples/mnist_lstm_example.rb
ruby-dnn-0.14.1 examples/mnist_lstm_example.rb
ruby-dnn-0.14.0 examples/mnist_lstm_example.rb