Sha256: 25ab353d07e7104b2d2c7cffcbd3b03f52e8153bb643704d2b21cf3ff6e97445
Contents?: true
Size: 1.86 KB
Versions: 3
Compression:
Stored size: 1.86 KB
Contents
module TensorStream ## Collection of machine learning related ops module RandomOps def RandomOps.included(klass) klass.class_eval do register_op :glorot_uniform, no_eval: true do |_context, tensor, _inputs| seed = tensor.options[:seed] random = _get_randomizer(tensor, seed) shape = tensor.options[:shape] || tensor.shape.shape fan_in, fan_out = if shape.size.zero? [1, 1] elsif shape.size == 1 [1, shape[0]] else [shape[0], shape.last] end limit = Math.sqrt(6.0 / (fan_in + fan_out)) minval = -limit maxval = limit generator = -> { random.rand * (maxval - minval) + minval } generate_vector(shape, generator: generator) end register_op :random_uniform, no_eval: true do |_context, tensor, inputs| maxval = tensor.options.fetch(:maxval, 1) minval = tensor.options.fetch(:minval, 0) seed = tensor.options[:seed] random = _get_randomizer(tensor, seed) generator = -> { random.rand * (maxval - minval) + minval } shape = inputs[0] || tensor.shape.shape generate_vector(shape, generator: generator) end register_op :random_standard_normal, no_eval: true do |_context, tensor, inputs| seed = tensor.options[:seed] random = _get_randomizer(tensor, seed) r = RandomGaussian.new(tensor.options.fetch(:mean), tensor.options.fetch(:stddev), -> { random.rand }) random = _get_randomizer(tensor, seed) generator = -> { r.rand } shape = inputs[0] || tensor.shape.shape generate_vector(shape, generator: generator) end end end end end
Version data entries
3 entries across 3 versions & 1 rubygems