module Torch module NN class Conv2d < ConvNd def initialize(in_channels, out_channels, kernel_size, stride: 1, padding: 0, dilation: 1, groups: 1, bias: true, padding_mode: "zeros") kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(in_channels, out_channels, kernel_size, stride, padding, dilation, false, _pair(0), groups, bias, padding_mode) end def forward(input) if @padding_mode == "circular" raise NotImplementedError end F.conv2d(input, @weight, @bias, @stride, @padding, @dilation, @groups) end def extra_inspect s = String.new("%{in_channels}, %{out_channels}, kernel_size: %{kernel_size}, stride: %{stride}") s += ", padding: %{padding}" if @padding != [0] * @padding.size s += ", dilation: %{dilation}" if @dilation != [1] * @dilation.size s += ", output_padding: %{output_padding}" if @output_padding != [0] * @output_padding.size s += ", groups: %{groups}" if @groups != 1 s += ", bias: false" unless @bias s += ", padding_mode: %{padding_mode}" if @padding_mode != "zeros" format(s, **dict) end end end end