require 'openssl' module Ccrypto module Ruby class SecretSharingEngine def initialize(*args, &block) @config = args.first raise SecretSharingException, "SecretSharingConfig is required" if not @config.is_a?(Ccrypto::SecretSharingConfig) raise SecretSharingException, "split_into value must be more than 1" if not @config.split_into.to_i > 1 raise SecretSharingException, "required_parts value (#{@config.required_parts}) must be less than or equal split_into value (#{@config.split_into})." if not @config.required_parts.to_i < @config.split_into.to_i end def split(secVal) case secVal when MemoryBuffer data = secVal.bytes when String data = secVal when Ccrypto::SecretKey data = secVal.to_bin else raise SecretSharingException, "Unknown how to process split for #{secVal.class}" end eng = ShamirSharing.new(@config.required_parts.to_i, data) shares = [] (1..@config.split_into.to_i).each do |i| res = eng.compute_share(i) res[1] = res[1].map { |v| v.chr }.join shares << res end shares end def self.combine(req, parts) parts.each do |k,v| parts[k] = v.chars.map(&:ord) end ss = ShamirSharing.new(req) ss.recover_secretdata(parts.to_a) end end # # This code is borrowed from PolyPasswordHasher-Ruby project at https://github.com/PolyPasswordHasher/PolyPasswordHasher-Ruby # class ShamirSharing attr_reader :_coefficients attr_reader :secretdata def initialize(threshold, secretdata=nil) @threshold = threshold @secretdata = secretdata @_coefficients = [] if secretdata secretdata.each_char do |secretbyte| thesecoefficients = secretbyte+OpenSSL::Random.random_bytes(@threshold-1) @_coefficients << thesecoefficients end end end def is_valid_share?(share) raise "Share is of incorrect length: #{share.size}" if share.size !=2 raise "Must initialize coefficient before checking is_valid_share?" unless @_coefficients raise "Must initialize coefficient before checking is_valid_share?" if @_coefficients.size != share[1].size x = share[0] fx = share[1] correctshare = compute_share(x) correctshare == share end def compute_share(x) raise "x should be integer" unless x.class == Fixnum raise "x must be between 1 and 255" if x <= 0 || x >256 raise "@_coefficient must be initialized" if @_coefficients.empty? sharebytes = [] @_coefficients.each do |thiscoefficient| thisshare = _f(x,thiscoefficient) sharebytes << thisshare end return x, sharebytes end def recover_secretdata(shares) newshares = [] shares.each do |share| newshares << share unless newshares.include?(share) end shares = newshares if @threshold > shares.size raise "Threshold: #{@threshold} is smaller than the number of uniquie shares: #{shares.size}" end if @secretdata raise "Recovoring secretdata when some is stored. Use check_share instead" end xs = [] shares.each do |share| if xs.include?(share[0]) raise "Different shares with the same first byte: #{share[0]}" end if share[1].size != shares[0][1].size raise "Shares have different lengths!" end xs << share[0] end mycoefficients = [] mysecretdata = '' shares[0][1].size.times.each do |byte_to_use| fxs = [] shares.each do |share| fxs << share[1][byte_to_use] end resulting_poly = _full_lagrange(xs,fxs) if resulting_poly[0..@threshold-1] + [0]*(shares.size - @threshold) != resulting_poly raise "Share do not match. Cannot decode" end mycoefficients << resulting_poly.map{|p| p.chr}.join mysecretdata += resulting_poly[0].chr end @_coefficients = mycoefficients @secretdata = mysecretdata end private def _f(x, coefs_bytes) raise "invalid share index value. cannot be 0" if x == 0 accumulator = 0 x_i = 1 coefs_bytes.each_byte do |c| accumulator = _gf256_add(accumulator, _gf256_mul(c, x_i)) x_i = _gf256_mul(x_i, x) end return accumulator end def _multiply_polynomials(a,b) resultterms = [] termpadding = [] b.each do |bterm| thisvalue = termpadding.clone a.each do |aterm| val = _gf256_mul(aterm, bterm) thisvalue << _gf256_mul(aterm, bterm) end resultterms = _add_polynomials(resultterms, thisvalue) termpadding << 0 end return resultterms end def _add_polynomials(a,b) if a.size < b.size a = a + [0]*(b.size - a.size) elsif a.size > b.size b = b + [0]*(a.size - b.size) end result = [] a.size.times do |pos| result << _gf256_add(a[pos], b[pos]) end return result end def _full_lagrange(xs, fxs) returnedcoefficients = [] fxs.size.times do |i| this_polynomial = [1] fxs.size.times do |j| next if i == j denominator = _gf256_sub(xs[i], xs[j]) this_term = [_gf256_div(xs[j], denominator), _gf256_div(1, denominator)] this_polynomial = _multiply_polynomials(this_polynomial, this_term) end this_polynomial = _multiply_polynomials(this_polynomial, [fxs[i]]) if fxs[i] returnedcoefficients = _add_polynomials(returnedcoefficients, this_polynomial) end return returnedcoefficients end GF256_EXP = [ 0x01, 0x03, 0x05, 0x0f, 0x11, 0x33, 0x55, 0xff, 0x1a, 0x2e, 0x72, 0x96, 0xa1, 0xf8, 0x13, 0x35, 0x5f, 0xe1, 0x38, 0x48, 0xd8, 0x73, 0x95, 0xa4, 0xf7, 0x02, 0x06, 0x0a, 0x1e, 0x22, 0x66, 0xaa, 0xe5, 0x34, 0x5c, 0xe4, 0x37, 0x59, 0xeb, 0x26, 0x6a, 0xbe, 0xd9, 0x70, 0x90, 0xab, 0xe6, 0x31, 0x53, 0xf5, 0x04, 0x0c, 0x14, 0x3c, 0x44, 0xcc, 0x4f, 0xd1, 0x68, 0xb8, 0xd3, 0x6e, 0xb2, 0xcd, 0x4c, 0xd4, 0x67, 0xa9, 0xe0, 0x3b, 0x4d, 0xd7, 0x62, 0xa6, 0xf1, 0x08, 0x18, 0x28, 0x78, 0x88, 0x83, 0x9e, 0xb9, 0xd0, 0x6b, 0xbd, 0xdc, 0x7f, 0x81, 0x98, 0xb3, 0xce, 0x49, 0xdb, 0x76, 0x9a, 0xb5, 0xc4, 0x57, 0xf9, 0x10, 0x30, 0x50, 0xf0, 0x0b, 0x1d, 0x27, 0x69, 0xbb, 0xd6, 0x61, 0xa3, 0xfe, 0x19, 0x2b, 0x7d, 0x87, 0x92, 0xad, 0xec, 0x2f, 0x71, 0x93, 0xae, 0xe9, 0x20, 0x60, 0xa0, 0xfb, 0x16, 0x3a, 0x4e, 0xd2, 0x6d, 0xb7, 0xc2, 0x5d, 0xe7, 0x32, 0x56, 0xfa, 0x15, 0x3f, 0x41, 0xc3, 0x5e, 0xe2, 0x3d, 0x47, 0xc9, 0x40, 0xc0, 0x5b, 0xed, 0x2c, 0x74, 0x9c, 0xbf, 0xda, 0x75, 0x9f, 0xba, 0xd5, 0x64, 0xac, 0xef, 0x2a, 0x7e, 0x82, 0x9d, 0xbc, 0xdf, 0x7a, 0x8e, 0x89, 0x80, 0x9b, 0xb6, 0xc1, 0x58, 0xe8, 0x23, 0x65, 0xaf, 0xea, 0x25, 0x6f, 0xb1, 0xc8, 0x43, 0xc5, 0x54, 0xfc, 0x1f, 0x21, 0x63, 0xa5, 0xf4, 0x07, 0x09, 0x1b, 0x2d, 0x77, 0x99, 0xb0, 0xcb, 0x46, 0xca, 0x45, 0xcf, 0x4a, 0xde, 0x79, 0x8b, 0x86, 0x91, 0xa8, 0xe3, 0x3e, 0x42, 0xc6, 0x51, 0xf3, 0x0e, 0x12, 0x36, 0x5a, 0xee, 0x29, 0x7b, 0x8d, 0x8c, 0x8f, 0x8a, 0x85, 0x94, 0xa7, 0xf2, 0x0d, 0x17, 0x39, 0x4b, 0xdd, 0x7c, 0x84, 0x97, 0xa2, 0xfd, 0x1c, 0x24, 0x6c, 0xb4, 0xc7, 0x52, 0xf6, 0x01] GF256_LOG = [ 0x00, 0x00, 0x19, 0x01, 0x32, 0x02, 0x1a, 0xc6, 0x4b, 0xc7, 0x1b, 0x68, 0x33, 0xee, 0xdf, 0x03, 0x64, 0x04, 0xe0, 0x0e, 0x34, 0x8d, 0x81, 0xef, 0x4c, 0x71, 0x08, 0xc8, 0xf8, 0x69, 0x1c, 0xc1, 0x7d, 0xc2, 0x1d, 0xb5, 0xf9, 0xb9, 0x27, 0x6a, 0x4d, 0xe4, 0xa6, 0x72, 0x9a, 0xc9, 0x09, 0x78, 0x65, 0x2f, 0x8a, 0x05, 0x21, 0x0f, 0xe1, 0x24, 0x12, 0xf0, 0x82, 0x45, 0x35, 0x93, 0xda, 0x8e, 0x96, 0x8f, 0xdb, 0xbd, 0x36, 0xd0, 0xce, 0x94, 0x13, 0x5c, 0xd2, 0xf1, 0x40, 0x46, 0x83, 0x38, 0x66, 0xdd, 0xfd, 0x30, 0xbf, 0x06, 0x8b, 0x62, 0xb3, 0x25, 0xe2, 0x98, 0x22, 0x88, 0x91, 0x10, 0x7e, 0x6e, 0x48, 0xc3, 0xa3, 0xb6, 0x1e, 0x42, 0x3a, 0x6b, 0x28, 0x54, 0xfa, 0x85, 0x3d, 0xba, 0x2b, 0x79, 0x0a, 0x15, 0x9b, 0x9f, 0x5e, 0xca, 0x4e, 0xd4, 0xac, 0xe5, 0xf3, 0x73, 0xa7, 0x57, 0xaf, 0x58, 0xa8, 0x50, 0xf4, 0xea, 0xd6, 0x74, 0x4f, 0xae, 0xe9, 0xd5, 0xe7, 0xe6, 0xad, 0xe8, 0x2c, 0xd7, 0x75, 0x7a, 0xeb, 0x16, 0x0b, 0xf5, 0x59, 0xcb, 0x5f, 0xb0, 0x9c, 0xa9, 0x51, 0xa0, 0x7f, 0x0c, 0xf6, 0x6f, 0x17, 0xc4, 0x49, 0xec, 0xd8, 0x43, 0x1f, 0x2d, 0xa4, 0x76, 0x7b, 0xb7, 0xcc, 0xbb, 0x3e, 0x5a, 0xfb, 0x60, 0xb1, 0x86, 0x3b, 0x52, 0xa1, 0x6c, 0xaa, 0x55, 0x29, 0x9d, 0x97, 0xb2, 0x87, 0x90, 0x61, 0xbe, 0xdc, 0xfc, 0xbc, 0x95, 0xcf, 0xcd, 0x37, 0x3f, 0x5b, 0xd1, 0x53, 0x39, 0x84, 0x3c, 0x41, 0xa2, 0x6d, 0x47, 0x14, 0x2a, 0x9e, 0x5d, 0x56, 0xf2, 0xd3, 0xab, 0x44, 0x11, 0x92, 0xd9, 0x23, 0x20, 0x2e, 0x89, 0xb4, 0x7c, 0xb8, 0x26, 0x77, 0x99, 0xe3, 0xa5, 0x67, 0x4a, 0xed, 0xde, 0xc5, 0x31, 0xfe, 0x18, 0x0d, 0x63, 0x8c, 0x80, 0xc0, 0xf7, 0x70, 0x07] def _gf256_add(a, b) val = a ^ b val end def _gf256_sub(a,b) _gf256_add(a,b) end def _gf256_mul(a,b) a = a.to_i b = b.to_i if a == 0 || b == 0 return 0 else GF256_EXP[(GF256_LOG[a] + GF256_LOG[b]) % 255] end end def _gf256_div(a,b) if a == 0 return 0 elsif b == 0 raise ZeroDivisionError else GF256_EXP[(GF256_LOG[a] - GF256_LOG[b]) % 255] end end end # class ShamirSharing end end