# ******************************************************************************* # OpenStudio(R), Copyright (c) 2008-2020, Alliance for Sustainable Energy, LLC. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the copyright holder nor the names of any contributors # may be used to endorse or promote products derived from this software without # specific prior written permission from the respective party. # # (4) Other than as required in clauses (1) and (2), distributions in any form # of modifications or other derivative works may not use the "OpenStudio" # trademark, "OS", "os", or any other confusingly similar designation without # specific prior written permission from Alliance for Sustainable Energy, LLC. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND ANY CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S), ANY CONTRIBUTORS, THE # UNITED STATES GOVERNMENT, OR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF # THEIR EMPLOYEES, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ******************************************************************************* # see the URL below for information on how to write OpenStudio measures: # http://nrel.github.io/OpenStudio-user-documentation/reference/measure_writing_guide/ # design document for this measure is at https://docs.google.com/document/d/16_TLRuhc4VFs2o0gRAp81hRObet7-s6fUEWo3HO7LpE/edit# require 'fileutils' require 'csv' require 'tempfile' require 'date' require 'json' require 'erb' require 'matrix' require 'open3' class Array def average raise 'Cannot average 0 items' if empty? sum = inject(:+) (sum / size).to_f end end # start the measure class RadianceMeasure < OpenStudio::Measure::ModelMeasure # human readable name def name return 'Radiance Daylighting Measure' end # human readable description def description return 'This measure uses Radiance instead of EnergyPlus for daylighting calculations with OpenStudio.' end # human readable description of modeling approach def modeler_description return 'The OpenStudio model is converted to Radiance format. All spaces containing daylighting objects (illuminance map, daylighting control point, and optionally glare sensors) will have annual illuminance calculated using Radiance, and the OS model\'s lighting schedules can be overwritten with those based on daylight responsive lighting controls.' end # define the arguments that the user will input def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new apply_schedules = OpenStudio::Measure::OSArgument.makeBoolArgument('apply_schedules', true) apply_schedules.setDisplayName('Apply schedules') apply_schedules.setDefaultValue('true') apply_schedules.setDescription('Update lighting load schedules for Radiance-daylighting control response') args << apply_schedules chs = OpenStudio::StringVector.new chs << 'Default' chs << 'Min' chs << 'Max' use_cores = OpenStudio::Measure::OSArgument.makeChoiceArgument('use_cores', chs, true) use_cores.setDisplayName('Cores') use_cores.setDefaultValue('Default') use_cores.setDescription('Number of CPU cores to use for Radiance jobs. Default is to use all but one core, NOTE: this option is ignored on Windows.') args << use_cores chs = OpenStudio::StringVector.new chs << 'Model' chs << 'Testing' chs << 'High' rad_settings = OpenStudio::Measure::OSArgument.makeChoiceArgument('rad_settings', chs, true) rad_settings.setDisplayName('Radiance Settings') rad_settings.setDefaultValue('Model') rad_settings.setDescription('The measure gets the Radiance simulation parameters from the "Model" by default. "High" will force high-quality simulation paramaters, and "Testing" uses very crude parameters for a fast simulation but produces very inaccurate results.') args << rad_settings debug_mode = OpenStudio::Measure::OSArgument.makeBoolArgument('debug_mode', false) debug_mode.setDisplayName('Debug Mode') debug_mode.setDefaultValue('false') debug_mode.setDescription('Generate additional log messages, images for each window group, and save all window group output.') args << debug_mode cleanup_data = OpenStudio::Measure::OSArgument.makeBoolArgument('cleanup_data', false) cleanup_data.setDisplayName('Cleanup Data') cleanup_data.setDefaultValue('false') cleanup_data.setDescription('Delete Radiance input and (most) output data, post-simulation (lighting schedules are passed to OpenStudio model (and daylight metrics are passed to OpenStudio-server, if applicable)') args << cleanup_data return args end def read_illuminance_file(filename, runner) m = Matrix[] data_section = false header = [] data = [] print_statement("Reading '#{filename}'", runner) raise "Could not find illuminance file #{filename}" unless File.exist?(filename) File.read(filename).each_line do |line| data_section = true if line =~ /^\s?\d/ if data_section csv_line = CSV.parse_line(line.strip, col_sep: ' ') m = Matrix.rows(m.to_a << csv_line) else header << line.to_s end end return m, header end def modelToRadPreprocess(model) result = OpenStudio::Model::Model.new result.getBuilding result.getTimestep result.getRunPeriod if !model.getOptionalWeatherFile.empty? result.getWeatherFile end thermal_zones = {} model.getSpaces.each do |space| space.hardApplyConstructions space.hardApplySpaceType(true) space.hardApplySpaceLoadSchedules # make all surfaces with surface boundary condition adiabatic space.surfaces.each do |surface| adjacentSurface = surface.adjacentSurface if !adjacentSurface.empty? # make sure to hard apply constructions in other space before messing with surface in other space adjacentSpace = adjacentSurface.get.space if !adjacentSpace.empty? adjacentSpace.get.hardApplyConstructions end # resets both surfaces surface.resetAdjacentSurface # set both to adiabatic surface.setOutsideBoundaryCondition('Adiabatic') adjacentSurface.get.setOutsideBoundaryCondition('Adiabatic') # remove interior windows surface.subSurfaces.each(&:remove) adjacentSurface.get.subSurfaces.each(&:remove) end end new_space = space.clone(result).to_Space.get thermalZone = space.thermalZone if !thermalZone.empty? new_thermal_zone = thermal_zones[thermalZone.get.name.to_s] if new_thermal_zone.nil? new_thermal_zone = OpenStudio::Model::ThermalZone.new(result) new_thermal_zone.setName(thermalZone.get.name.to_s) new_thermal_zone.setUseIdealAirLoads(true) thermal_zones[thermalZone.get.name.to_s] = new_thermal_zone end new_space.setThermalZone(new_thermal_zone) end end result.getShadingSurfaceGroups.each(&:remove) result.getSpaceItems.each do |spaceItem| if !spaceItem.to_People.empty? # keep people elsif !spaceItem.to_Lights.empty? # keep lights elsif !spaceItem.to_Luminaire.empty? # keep luminaires else spaceItem.remove end end result.getOutputVariables.each(&:remove) # add the OVars we need for Radiance output_variables = [ 'Site Exterior Horizontal Sky Illuminance', 'Site Exterior Beam Normal Illuminance', 'Site Solar Altitude Angle', 'Site Solar Azimuth Angle', 'Site Sky Diffuse Solar Radiation Luminous Efficacy', 'Site Beam Solar Radiation Luminous Efficacy', 'Zone People Occupant Count', 'Zone Lights Electric Power' ] output_variables.each do |var| output_variable = OpenStudio::Model::OutputVariable.new(var, result) output_variable.setReportingFrequency('Hourly') end # only report weather periods simulation_control = result.getSimulationControl simulation_control.setRunSimulationforSizingPeriods(false) simulation_control.setRunSimulationforWeatherFileRunPeriods(true) simulation_control.setSolarDistribution('MinimalShadowing') # purge unused result.purgeUnusedResourceObjects return result end # better OS detection # will call out Git Bash shells as Windows machines, optionally differentiates Mac versus *nix module OS def self.windows (/cygwin|mswin|mingw|bccwin|wince|emx/ =~ RUBY_PLATFORM) != nil end def self.mac (/darwin/ =~ RUBY_PLATFORM) != nil end def self.unix !OS.windows end def self.linux OS.unix && !OS.mac end end # Check OpenStudio version def got_2x v2 = false if OpenStudio::VersionString.new(OpenStudio.openStudioVersion).major >= 2 v2 = true end return v2 end # check for number of rmtxop processes def merge_count if OS.windows merges = `WMIC PROCESS WHERE Name="rmtxop.exe"`.split("\n\n") return merges.size else return `pgrep rmtxop`.split.size end end def run(model, runner, user_arguments) super(model, runner, user_arguments) # record current directory current_dir = Dir.pwd runner.registerInfo("Begin Encoding.default_external = #{Encoding.default_external}") runner.registerInfo("Begin Encoding.default_internal = #{Encoding.default_internal}") OpenStudio::Logger.instance.standardOutLogger.enable # Enable debug-level log messages # OpenStudio::Logger::instance().standardOutLogger().setLogLevel(OpenStudio::Debug) # use the built-in error checking return false if !runner.validateUserArguments(arguments(model), user_arguments) # assign the user inputs to variables apply_schedules = runner.getBoolArgumentValue('apply_schedules', user_arguments) use_cores = runner.getStringArgumentValue('use_cores', user_arguments) rad_settings = runner.getStringArgumentValue('rad_settings', user_arguments) debug_mode = runner.getBoolArgumentValue('debug_mode', user_arguments) cleanup_data = runner.getBoolArgumentValue('cleanup_data', user_arguments) # Energyplus "pre-run" model dir epout_dir = 'eplus_preprocess' if !File.exist?(epout_dir) FileUtils.mkdir_p(epout_dir) end # Radiance model dir rad_dir = 'radiance' if !File.exist?(rad_dir) FileUtils.mkdir_p(rad_dir) end ## Radiance Utilities # print statement and execute as system call def exec_statement(s, runner) if OS.windows s = s.tr('/', '\\') end runner.registerInfo(s.to_s) # additional puts for OSApp until v2.0... puts "[Radiance Measure #{Time.now.getutc}]: \$ #{s}" result = system(s) return result end # print statement for OS-Server and OSApp def print_statement(s, runner) # if /mswin/.match(RUBY_PLATFORM) || /mingw/.match(RUBY_PLATFORM) if OS.windows s = s.tr('/', '\\') end runner.registerInfo(s.to_s) # additional puts for OSApp until v2.0... puts "[Radiance Measure #{Time.now.getutc}]: #{s}" end # UNIX-style which def which(cmd) exts = ENV['PATHEXT'] ? ENV['PATHEXT'].split(';') : [''] ENV['PATH'].split(File::PATH_SEPARATOR).each do |path| exts.each do |ext| exe = "#{path}/#{cmd}#{ext}" return exe if File.executable? exe end end return nil end # set up MP option coreCount = OpenStudio::System.numberOfProcessors sim_cores = '1' if use_cores == 'Max' sim_cores = coreCount elsif use_cores == 'Min' sim_cores = 1 else sim_cores = coreCount - 1 end if OS.windows # /mswin/.match(RUBY_PLATFORM) || /mingw/.match(RUBY_PLATFORM) print_statement('Radiance multiprocessing features are not supported on Windows.', runner) sim_cores = 1 end print_statement("Using #{sim_cores} core(s) for Radiance jobs", runner) # help those poor Windows users out programExtension = '' perlExtension = '' catCommand = 'cat' osQuote = "\'" if OS.windows # /mswin/.match(RUBY_PLATFORM) || /mingw/.match(RUBY_PLATFORM) programExtension = '.exe' perlExtension = '.pl' catCommand = 'type' osQuote = '"' end ## END Radiance Utilities runner.registerInfo('Running in debug mode') if debug_mode # this is radiance path, run commands from this directory for some reason path = nil # this is "radpath", in the (Radiance) parlance of our times... raypath = nil # setup environment for Radiance and Perl if !got_2x print_statement('BCL Radiance measure version, running on legacy OpenStudio', runner) co = OpenStudio::Runmanager::ConfigOptions.new(true) co.fastFindRadiance radiancePath = co.getTools.getLastByName('rad').localBinPath.parent_path path = OpenStudio::Path.new(radiancePath).to_s rad_bin_path = (OpenStudio::Path.new(radiancePath).parent_path / OpenStudio::Path.new('bin')).to_s raypath = (OpenStudio::Path.new(radiancePath).parent_path / OpenStudio::Path.new('lib')).to_s epw2weapath = (OpenStudio::Path.new(radiancePath) / OpenStudio::Path.new('epw2wea')).to_s if OS.windows # /mswin/.match(RUBY_PLATFORM) || /mingw/.match(RUBY_PLATFORM) perlpath = '' if OpenStudio.applicationIsRunningFromBuildDirectory perlpath = OpenStudio.getApplicationRunDirectory.parent_path.parent_path / OpenStudio::Path.new('strawberry-perl-5.16.2.1-32bit-portable-reduced/perl/bin') else perlpath = OpenStudio.getApplicationRunDirectory.parent_path / OpenStudio::Path.new('strawberry-perl-5.16.2.1-32bit-portable-reduced/perl/bin') end print_statement('Adding path for local perl: ' + perlpath.to_s, runner) ENV['PATH'] = path + ';' + ENV['PATH'] + ';' + perlpath.to_s ENV['RAYPATH'] = path + ';' + raypath + ';.' else ENV['PATH'] = path + ':' + ENV['PATH'] ENV['RAYPATH'] = path + ':' + raypath + ':.' end end if got_2x radiance_directory = nil begin radiance_directory = OpenStudio.getRadianceDirectory.to_s rescue NameError end if !radiance_directory # DLM: we did not ship radiance before adding the getRadianceDirectory method, rely on rtrace in the path rtrace_exe = which('rtrace') if rtrace_exe radiance_directory = File.dirname(File.dirname(rtrace_exe)) else runner.registerError('Cannot find required program rtrace.') exit false end end print_statement("Found Radiance at: #{radiance_directory}", runner) path = radiance_directory rad_bin_path = File.join(radiance_directory, 'bin') raypath = File.join(radiance_directory, 'lib') perl_directory = nil begin perl_exe = OpenStudio.getPerlExecutable perl_directory = perl_exe.parent_path.to_s rescue NameError end if !perl_directory # DLM: we did not ship perl before adding the getPerlExecutable method, rely on perl in the path perl_exe = which('perl') if perl_exe perl_directory = File.dirname(perl_exe) else runner.registerError('Cannot find required program perl.') exit false end end print_statement("Found Perl at: #{perl_directory}", runner) energyplus_exe = nil begin energyplus_exe = OpenStudio.getEnergyPlusExecutable rescue NameError end print_statement("Found EnergyPlus at: #{energyplus_exe}", runner) # ENV['ENERGYPLUS_EXE_PATH'] ENV['PATH'] = [File.join(radiance_directory, 'bin'), perl_directory, ENV['PATH']].join(File::PATH_SEPARATOR) ENV['RAYPATH'] = [File.join(radiance_directory, 'bin'), File.join(radiance_directory, 'lib'), '.', ENV['RAYPATH']].join(File::PATH_SEPARATOR) end # Radiance version detection and environment reportage begin # need to help Open3 on Windows (path sep issues) returnDir = Dir.pwd Dir.chdir(rad_bin_path) ver = Open3.capture2("rcontrib#{programExtension} -version") # aaaannnddd, we're back... Dir.chdir(returnDir) rescue StandardError StandardError raise('Error determining Radiance version, system is mis-configured.') end print_statement("Radiance version: #{ver[0]}", runner) print_statement("Radiance binary dir: #{rad_bin_path}", runner) print_statement("Radiance library dir: #{raypath}", runner) print_statement('Running on Windows (sorry)', runner) if OS.windows && debug_mode print_statement('Running on unix', runner) if OS.unix && debug_mode if !got_2x if Dir.glob(epw2weapath + programExtension).empty? runner.registerError("Cannot find epw2wea tool in radiance installation at '#{radiancePath}'. You may need to install a newer version of Radiance.") exit false end end if !which('perl') runner.registerError('Perl could not be found in path, exiting') exit false end # get the weather if !got_2x epw_path = nil # try runner first if runner.lastEpwFilePath.is_initialized test = runner.lastEpwFilePath.get.to_s if File.exist?(test) epw_path = test end end # try model second if !epw_path if model.weatherFile.is_initialized test = model.weatherFile.get.path if test.is_initialized # have a file name from the model if File.exist?(test.get.to_s) epw_path = test.get else # If this is an always-run Measure, need to check for file in different path alt_weath_path = File.expand_path(File.join(File.dirname(__FILE__), \ '../../../resources')) alt_epw_path = File.expand_path(File.join(alt_weath_path, test.get.to_s)) server_epw_path = File.expand_path(File.join(File.dirname(__FILE__), \ "../../weather/#{File.basename(test.get.to_s)}")) if File.exist?(alt_epw_path) epw_path = OpenStudio::Path.new(alt_epw_path) elsif File.exist? server_epw_path epw_path = OpenStudio::Path.new(server_epw_path) else runner.registerError("Model has been assigned a weather file, but the file is not in \ the specified location of '#{test.get}'. server_epw_path: #{server_epw_path}, test \ basename: #{File.basename(test.get.to_s)}, test: #{test}") return false end end else runner.registerError('Model has a weather file assigned, but the weather file path has \ been deleted.') return false end else runner.registerError('Model has not been assigned a weather file.') return false end end else ## weather is in the E+ pre-process for OS2.x end ## Translate Model to Radiance radPath = nil if !got_2x # save osm for input to eplus pre-process modelPath = OpenStudio::Path.new('eplusin.osm') model.save(modelPath, true) # find EnergyPlus co = OpenStudio::Runmanager::ConfigOptions.new co.fastFindEnergyPlus # make a workflow (EnergyPlus "pre-run" to get constructions and weather) workflow = OpenStudio::Runmanager::Workflow.new('ModelToRadPreprocess->ModelToIdf->ExpandObjects->EnergyPlus') workflow.add(co.getTools) # add model-to-rad workflow modelToRad = OpenStudio::Runmanager::Workflow.new('ModelToRad') workflow.addWorkflow(modelToRad) # minimize file path lengths workflow.addParam(OpenStudio::Runmanager::JobParam.new('flatoutdir')) # make the run manager runDir = OpenStudio::Path.new(epout_dir) runmanager_path = OpenStudio::Path.new('runmanager.db') runmanager = OpenStudio::Runmanager::RunManager.new(runmanager_path, true, true, false, false) OpenStudio.makeParentFolder(runDir, OpenStudio::Path.new, true) print_statement('Creating workflow', runner) jobtree = workflow.create(OpenStudio.system_complete(runDir), \ OpenStudio.system_complete(modelPath), OpenStudio::Path.new(epw_path)) runmanager.enqueue(jobtree, true) print_statement("Running jobs in #{runDir}", runner) runmanager.setPaused(false) runmanager.waitForFinished if jobtree.treeErrors.succeeded print_statement('OpenStudio to Radiance translation complete', runner) else jobtree.treeErrors.errors.each do |err| print_statement("ERROR: #{err}", runner) end print_statement('Model issue(s) caused EnergyPlus preprocess failure, aborting.', runner) abort end radPath = modelPath.parent_path / OpenStudio::Path.new('radiance') radPath = OpenStudio.system_complete(radPath) else # OS 2.x print_statement('Translating OpenStudio 2.x model to Radiance format...', runner) # Run eplus pre-process for sql output for Radiance translator (got all that?) epout_dir = 'eplus_preprocess' if !File.exist?(epout_dir) FileUtils.mkdir_p(epout_dir) end modelPath = OpenStudio::Path.new(File.join(epout_dir, 'eplusin.osm')) weather_file = model.getOptionalWeatherFile weather_file_path = weather_file.get.path weather_file_path = runner.workflow.findFile(weather_file_path.get) wf = OpenStudio::WorkflowJSON.new wf.setSeedFile('eplusin.osm') wf.setWeatherFile(weather_file_path.get) wf_path = File.join(Dir.pwd, epout_dir, 'temp_in.osw') osw = wf.saveAs(wf_path) preprocessed_model = modelToRadPreprocess(model.clone.to_Model) preprocessed_model.save(modelPath, true) cli = OpenStudio.getOpenStudioCLI runner.registerInfo("OpenStudio CLI version: #{OpenStudio.openStudioLongVersion}") system("\"#{cli}\" run -w \"#{wf_path}\"") sql_file = OpenStudio::SqlFile.new(File.join(Dir.pwd, epout_dir, 'run/eplusout.sql')) # fix hard coded path old_sql_file = model.sqlFile model.setSqlFile(sql_file) # Finally, translate the OSM ft = OpenStudio::Radiance::RadianceForwardTranslator.new radPath = OpenStudio::Path.new('radiance') radPath = OpenStudio.system_complete(radPath) ft.translateModel(radPath, model) if old_sql_file.empty? model.resetSqlFile else model.resetSqlFile model.setSqlFile(old_sql_file.get) end end ## Radiance crap windowControls = Dir.glob('scene/glazing/WG*.rad') # set up output dirs FileUtils.mkdir_p("#{radPath}/output/dc") unless File.exist?("#{radPath}/output/dc") FileUtils.mkdir_p("#{radPath}/output/ts") unless File.exist?("#{radPath}/output/ts") FileUtils.mkdir_p("#{radPath}/output/dc/merged_space/maps") unless File.exist?("#{radPath}/output/dc/merged_space/maps") FileUtils.mkdir_p("#{radPath}/sql") unless File.exist?("#{radPath}/sql") FileUtils.mkdir_p("#{radPath}/wx") unless File.exist?("#{radPath}/wx") FileUtils.mkdir_p("#{radPath}/octrees") unless File.exist?("#{radPath}/octrees") if !got_2x # copy Radiance model up FileUtils.copy_entry("#{epout_dir}/4-ModelToRad-0", rad_dir) FileUtils.cp("#{epout_dir}/3-EnergyPlus-0/eplusout.sql", "#{rad_dir}/sql") # remove the E+ run dir so we don't confuse users FileUtils.rm_rf(epout_dir) else FileUtils.cp("#{epout_dir}/run/eplusout.sql", "#{radPath}/sql") # remove the E+ run dir so we don't confuse users FileUtils.rm_rf(epout_dir) end # Set Radiance simulation settings # TODO: read settings directly from model options_tregVars = '' options_dmx = '' options_vmx = '' if rad_settings == 'Testing' options_tregVars = '-e MF:1 -f tregenza.cal -b tbin -bn Ntbins' options_dmx = '-ab 1 -ad 128 -as 56 -dj 1 -dp 1 -dt 0.1 -dc 0.1 -lw 0.1 ' options_vmx = '-ab 1 -ad 128 -as 56 -dj 1 -dp 1 -dt 0.1 -dc 0.1 -lw 0.1' end if rad_settings == 'High' options_tregVars = '-e MF:1 -f tregenza.cal -b tbin -bn Ntbins' options_dmx = '-ab 3 -ad 1024 -as 512 -dj 1 -dp 1 -dt 0 -dc 1 -lw 0.0001 ' options_vmx = '-ab 10 -ad 65536 -as 512 -dj 1 -dp 1 -dt 0 -dc 1 -lw 1.52e-05' end options_klemsDensity = '' options_skyvecDensity = '1' if rad_settings == 'Model' File.open("#{radPath}/options/treg.opt", 'r') do |file| tempIO = file.read tempSettings = tempIO.split(' ') options_klemsDensity = "#{tempSettings[0]} #{tempSettings[1]}" options_skyvecDensity = tempSettings[3].split(':')[1] options_tregVars = tempSettings[2..-1].join(' ') end File.open("#{radPath}/options/dmx.opt", 'r') do |file| tempIO = file.read options_dmx = tempIO end File.open("#{radPath}/options/vmx.opt", 'r') do |file| tempIO = file.read options_vmx = tempIO end end # configure multiprocessing procsUsed = '' if OS.windows procsUsed = '' else procsUsed = "-n #{sim_cores}" end # core functions def calculateDaylightCoeffecients(radPath, sim_cores, t_catCommand, options_tregVars, options_klemsDensity, options_skyvecDensity, options_dmx, options_vmx, rad_settings, procsUsed, runner, debug_mode) # get calculation points array size (needed for rmtxop later) mapFile = File.open('numeric/merged_space.map', 'r') rfluxmtxDim = mapFile.readlines.size.to_s # sort out window groups, controls haveWG0 = '' haveWG1 = '' windowGroupCheck = File.open('bsdf/mapping.rad') windowGroupCheck.each do |row| next if row[0] == '#' wg = row.split(',')[0] if wg == 'WG0' haveWG0 = 'True' elsif wg == 'WG1' haveWG1 = 'True' end end windowGroupCheck.close if rfluxmtxDim.to_i > 1000 && rfluxmtxDim.to_i < 2999 print_statement("WARN: Model contains a large number of Radiance calculation points (#{rfluxmtxDim}), will produce large results files and potential memory issues.", runner) elsif rfluxmtxDim.to_i > 3000 print_statement("ERROR: Too many calculation points in model (#{rfluxmtxDim}). Consider reducing the number or resolution of illuminance maps in this model.", runner) exit false else print_statement("Passing #{rfluxmtxDim} calculation points to Radiance", runner) end # process individual window groups print_statement('Computing daylight coefficient matrices', runner) exec_statement('oconv materials/materials.rad model.rad > octrees/model_dc.oct', runner) windowMaps = File.open('bsdf/mapping.rad') windowMaps.each do |row| next if row[0] == '#' wg = row.split(',')[0] rad_command = '' if wg == 'WG0' # window group zero (all uncontrolled windows) print_statement('Computing view matrix for uncontrolled windows (WG0)', runner) # make WG0 octree (with shade-controlled window groups blacked out, if any) input_files = '' if haveWG1 == 'True' input_files = 'materials/materials.rad materials/materials_WG0.rad model.rad' else input_files = 'materials/materials.rad model.rad skies/dc_sky.rad' end # for the calc, include unit sky exec_statement("oconv #{input_files} skies/dc_sky.rad > octrees/model_WG0.oct", runner) if debug_mode # for check images (insert sky later, in genImages()) exec_statement("oconv #{input_files} > octrees/debug_model_WG0.oct", runner) end # use more aggro simulation parameters because this is basically a view matrix rtrace_args = options_vmx.to_s ### foo (-faf) rad_command = "#{t_catCommand} numeric/merged_space.map | rcontrib #{rtrace_args} #{procsUsed} -I+ -fo #{options_tregVars} -faa -o output/dc/WG0.vmx -m skyglow octrees/model_WG0.oct" exec_statement(rad_command, runner) else # controlled window group print_statement("Processing shade-controlled window group '#{wg}'", runner) if row.split(',')[4].rstrip == 'SWITCHABLE' # has switchable glazing print_statement("Window Group '#{wg}' has switchable glazing control, calculating two view matrices", runner) # black out WG0 and all other WG shades # start with base materials, then black everything out base_mats = 'materials/materials.rad materials/materials_blackout.rad' # do view matrices, one for each tint state rtrace_args = options_vmx.to_s ['clear', 'tinted'].each do |state| # for the calc exec_statement("oconv #{base_mats} materials/#{wg}_#{state}.mat model.rad skies/dc_sky.rad > octrees/model_#{wg}_#{state}.oct", runner) if debug_mode # for check images exec_statement("oconv #{base_mats} materials/#{wg}_#{state}.mat model.rad > octrees/debug_model_#{wg}_#{state}.oct", runner) end print_statement("Computing view matrix for window group '#{wg}' in #{state} state", runner) exec_statement("#{t_catCommand} \"numeric/merged_space.map\" | rcontrib #{rtrace_args} #{procsUsed} -I+ -fo #{options_tregVars} -faa -o \"output/dc/#{wg}_#{state}.vmx\" -m skyglow octrees/model_#{wg}_#{state}.oct", runner) end else # has shades # use more chill sim parameters rtrace_args = options_dmx.to_s # do daylight matrices for controlled windows print_statement("Computing daylight matrix for window group '#{wg}'", runner) if debug_mode # make octrees for debug images # load materials, then black out all materials, then add in scene geometry and glazing (no shades) input_files = 'materials/materials.rad materials/materials_blackout.rad' scene_files = [] Dir.glob('scene/*.rad').each { |f| scene_files << f } Dir.glob('scene/glazing/*.rad').each { |f| scene_files << f } # now reset window group glazing material and make an octree exec_statement("oconv #{input_files} materials/#{wg}.mat #{scene_files.join(' ')} > octrees/debug_model_#{wg}.oct", runner) # now reset window group shade material to actual and make an octree exec_statement("oconv #{input_files} materials/#{wg}.mat materials/#{wg}_SHADE.mat #{scene_files.join(' ')} scene/shades/#{wg}_SHADE.rad > octrees/debug_model_#{wg}_shade.oct", runner) end ### foo (-faa) rad_command = "rfluxmtx #{rtrace_args} -n #{sim_cores} -faa -v scene/shades/#{wg}_SHADE.rad skies/dc_sky.rad -i octrees/model_dc.oct > \"output/dc/#{wg}.dmx\"" exec_statement(rad_command, runner) end end end # do remaining view matrices, if applicable shade_check = Dir.glob('scene/shades/WG*.rad') if !shade_check.empty? # compute view matrices for shade controlled window groups all at once # use fine params rtrace_args = options_vmx.to_s print_statement('Computing view matri(ces) for all remaining window groups', runner) # get the shaded window groups' shade polygons wgInput = [] # get the SHADE polygons for sampling (NOT the GLAZING ones!) # this will automatically omit switchable glazing-controlled window groups. ;) Dir.glob('scene/shades/WG*.rad') do |file| wgInput << file end # make the receiver file exec_statement("#{t_catCommand} \"materials/materials_vmx.rad\" #{wgInput.join(' ')} > receivers_vmx.rad", runner) # make the octree scene_files = [] Dir.glob('scene/*.rad').each { |f| scene_files << f } exec_statement("oconv materials/materials.rad #{scene_files.join(' ')} > octrees/model_vmx.oct", runner) # make rfluxmtx do all the work ### foo (-faf) rad_command = "rfluxmtx #{rtrace_args} -n #{sim_cores} -ds .15 -faa -y #{rfluxmtxDim} -I -v - receivers_vmx.rad -i octrees/model_vmx.oct < numeric/merged_space.map" exec_statement(rad_command, runner) FileUtils.rm_f('receivers_vmx.rad') end if haveWG1 == 'True' # compute daylight coefficient matrix for window group control points rtrace_args = options_dmx.to_s exec_statement('oconv "materials/materials.rad" model.rad skies/dc_sky.rad > octrees/model_wc.oct', runner) print_statement('Computing DCs for window control points', runner) ### foo (keep this one as ASCII) rad_command = "#{t_catCommand} \"numeric/window_controls.map\" | rcontrib #{rtrace_args} #{procsUsed} -I+ -faa -fo #{options_tregVars} " \ '-o "output/dc/window_controls.vmx" -m skyglow octrees/model_wc.oct' exec_statement(rad_command, runner) end print_statement('Daylight coefficient matrices computed.', runner) end # annual simulation dealio def runSimulation(t_space_names_to_calculate, t_sqlFile, t_simCores, t_options_skyvecDensity, t_site_latitude, t_site_longitude, t_site_stdmeridian, t_radPath, t_spaceWidths, t_spaceHeights, t_radGlareSensorViews, runner, debug_mode) print_statement('Performing annual daylight simulation(s)', runner) rawValues = {} values = {} dcVectors = {} # sort out window groups, controls haveWG0 = 'False' haveWG1 = 'False' windowGroupCheck = File.open('bsdf/mapping.rad') windowGroupCheck.each do |row| next if row[0] == '#' wg = row.split(',')[0] if wg == 'WG0' haveWG0 = 'True' elsif wg == 'WG1' haveWG1 = 'True' end end windowGroupCheck.close # Run the simulation simulations = [] rad_command = "gendaymtx -m #{t_options_skyvecDensity} \"wx/in.wea\" > annual-sky.mtx" exec_statement(rad_command, runner) windowMaps = File.open('bsdf/mapping.rad') # do annual sim for each window group and state windowMaps.each do |row| # skip header next if row[0] == '#' wg = row.split(',')[0] # do uncontrolled windows (WG0) if wg == 'WG0' # if row.split(",")[2] == "n/a" || row.split(",")[2] == "AlwaysOff" # keep header, convert to illuminance, but no transpose ### foo (-ff) while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end rad_command = "dctimestep output/dc/#{wg}.vmx annual-sky.mtx | rmtxop -fa -c 47.4 120 11.6 - > output/ts/#{wg}.ill" exec_statement(rad_command, runner) else # do all controlled window groups if row.split(',')[4].rstrip == 'SWITCHABLE' # make single phase illuminance sched for each state states = ['clear', 'tinted'] states.each_index do |i| while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end print_statement("Calculating annual iluminance for window group '#{wg}', state: #{states.index(states[i])} (switchable glazing - #{states[i]})", runner) ### foo (-ff) exec_statement("dctimestep output/dc/#{wg}_#{states[i]}.vmx annual-sky.mtx | rmtxop -fa -c 47.4 120 11.6 - > output/ts/#{wg}_#{states.index(states[i])}.ill", runner) end else wgXMLs = row.split(',')[4..-1] if wgXMLs.size > 2 print_statement("WARN: Window Group #{wg} has #{wgXMLs.size} BSDFs (2 max supported by OpenStudio application).", runner) end wgXMLs.each_index do |i| # rad_command = "dctimestep output/dc/#{wg}.vmx bsdf/#{wgXMLs[i].strip} output/dc/#{wg}.dmx annual-sky.mtx | rmtxop -fa -c 47.4 120 11.6 - > output/ts/#{wg}_INDEX#{wgXMLs.index[i]}_#{wgXMLs[i].split[0]}.ill" while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end print_statement("Calculating annual iluminance for window group '#{wg}', state: #{wgXMLs.index(wgXMLs[i])} (BSDF filename: '#{wgXMLs[i].split[0]}'):", runner) rad_command = "dctimestep output/dc/#{wg}.vmx bsdf/#{wgXMLs[i].strip} output/dc/#{wg}.dmx annual-sky.mtx | rmtxop -fa -c 47.4 120 11.6 - > output/ts/#{wg}_#{wgXMLs.index(wgXMLs[i])}.ill" ### orig ^^^ # ##rad_command = "dctimestep output/dc/#{wg}.vmx bsdf/#{wgXMLs[i].strip} output/dc/#{wg}.dmx annual-sky.mtx | rmtxop -ff -c 47.4 120 11.6 - > output/ts/#{wg}_#{wgXMLs.index(wgXMLs[i])}.ill" exec_statement(rad_command, runner) end end end end if haveWG1 == 'True' # get annual values for window control sensors (note: convert to illuminance, no transpose, strip header) ### foo leave at -fa while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end exec_statement('dctimestep output/dc/window_controls.vmx annual-sky.mtx | rmtxop -fa -c 47.4 120 11.6 - | getinfo - > output/ts/window_controls.ill', runner) print_statement('Blending window group results per shade control schedule', runner) # do that window group/state merge thing wg_index = 0 print_statement('getting window shade control(s) values', runner) if debug_mode filename = 'output/ts/window_controls.ill' windowControls, _header = read_illuminance_file(filename, runner) print_statement("windowControls matrix is #{windowControls.row_count} rows x #{windowControls.column_count} columns", runner) if debug_mode windowGroups = File.open('bsdf/mapping.rad') windowGroups.each do |wg| next if wg[0] == '#' # skip header windowGroup = wg.split(',')[0] next if windowGroup == 'WG0' # skip unshaded windows wg_index += 1 wgIllumFiles = Dir.glob("output/ts/#{windowGroup}_*.ill").sort shadeControlType = wg.split(',')[2].to_s shadeControlSetpointWatts = wg.split(',')[3].to_f shadeControlSetpoint = shadeControlSetpointWatts * 179 # Radiance's luminous efficacy factor wg_normal = wg.split(',')[1] wg_normal_x = wg_normal.split(' ')[0].to_f wg_normal_y = wg_normal.split(' ')[1].to_f wg_normal_z = wg_normal.split(' ')[2].to_f # DLM: hacktastic way to implement these options for now if shadeControlType == 'AlwaysOn' shadeControlSetpoint = -1000 elsif shadeControlType == 'AlwaysOff' shadeControlSetpoint = 10000000000 end print_statement("Processing Window Group '#{windowGroup}', (exterior normal: '#{wg_normal_x * -1} #{wg_normal_y * -1} #{wg_normal_z * -1}', shade control setpoint: #{shadeControlSetpoint.round(0)} lux)", runner) ill0, header = read_illuminance_file(wgIllumFiles[0], runner) ill1, _header = read_illuminance_file(wgIllumFiles[1], runner) wgMerge = Matrix.build(ill0.row_count, ill0.column_count) { 0 } print_statement("wgmerge is #{wgMerge.row_count} rows x #{wgMerge.column_count} columns", runner) if debug_mode wgShadeSchedule = [] print_statement("window group = '#{wg.split(',')[0]}', window controls matrix index = '#{wg_index - 1}'", runner) if debug_mode windowControls.row(wg_index - 1).each_with_index do |illuminance, row_index| window_illuminance = illuminance.to_f if window_illuminance < shadeControlSetpoint print_statement("E(#{windowGroup}) is #{window_illuminance.round(0)} lux at index #{row_index}: STATE=0 (up/clear)", runner) if debug_mode && row_index > 149 && row_index < 162 # print shade decisions for one day ill0.column(row_index).each_with_index do |value, column_index| wgMerge.send(:[]=, column_index, row_index, value) end wgShadeSchedule << "#{row_index},#{window_illuminance.round(0)},#{shadeControlSetpoint.round(0)},0\n" else print_statement("E(#{windowGroup}) is #{window_illuminance.round(0)} lux at index #{row_index}: STATE=1 (dn/tinted)", runner) if debug_mode && row_index > 149 && row_index < 162 # print shade decisions for one day ill1.column(row_index).each_with_index do |value, column_index| wgMerge.send(:[]=, column_index, row_index, value.to_f) end wgShadeSchedule << "#{row_index},#{window_illuminance.round(0)},#{shadeControlSetpoint.round(0)},1\n" end end wgIllum = File.open("output/ts/m_#{windowGroup}.ill", 'w') wgShade = File.open("output/ts/#{windowGroup}.shd", 'w') header.each { |head| wgIllum.print head.to_s } wgMerge.to_a.each { |array_ts| wgIllum.print " #{array_ts.join(' ')}\n" } # note leading space, for compatibility with default rfluxmtx output wgShadeSchedule.each { |sh| wgShade.print sh.to_s } wgIllum.close wgShade.close FileUtils.rm_f Dir.glob('*.tmp') end end # make whole-building illuminance file print_statement('Creating whole-building daylight results file...', runner) # get the controlled window group results (m_*.ill), if any mergeWindows = Dir.glob('output/ts/m_*.ill') if !mergeWindows.empty? print_statement("Gathering shade-controlled window group results (#{mergeWindows.size} total)", runner) else print_statement('INFO: Model has 0 controlled window groups', runner) end # get the uncontrolled windows results, if any if File.exist?('output/ts/WG0.ill') mergeWindows.insert(0, 'output/ts/WG0.ill') else print_statement('INFO: Model has no uncontrolled windows.', runner) end if mergeWindows.empty? print_statement('ERROR: no illuminance results.', runner) exit false elsif mergeWindows.size == 1 # go straight to final building results file format while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end print_statement('Finalizing output...', runner) exec_statement("rmtxop -fa #{mergeWindows[0]} -t | getinfo - > output/merged_space.ill", runner) else # make initial building results from first window group while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end print_statement("Starting final building illumimance file with #{mergeWindows[0]}...", runner) exec_statement("rmtxop -fa #{mergeWindows[0]} -t > output/final_merge.tmp", runner) # add remaining groups, one at a time mergeWindows[1..-1].each do |merge| print_statement("adding #{merge}...", runner) temp_fname = rand(36**15).to_s(36) while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end exec_statement("rmtxop -fa output/final_merge.tmp + #{merge} -t > #{temp_fname}", runner) FileUtils.mv temp_fname, 'output/final_merge.tmp', force: true end # strip header while merge_count > 1 puts 'waiting in rmtxop queue...' sleep(5) end print_statement('Finalizing output...', runner) exec_statement('rmtxop -fa output/final_merge.tmp -t | getinfo - > output/merged_space.ill', runner) FileUtils.rm_f 'output/final_merge.tmp' print_statement('Done.', runner) end ## window merge end rawValues = parseResults(simulations, t_space_names_to_calculate, t_spaceWidths, t_spaceHeights, t_radGlareSensorViews, t_radPath, runner, debug_mode) dcVectors = nil # for each environment period (design days, annual, or arbitrary) you will create a directory for results t_sqlFile.availableEnvPeriods.each do |envPeriod| # DLM: all of these might be available directly from the EpwFile after Jason DeGraw's work diffHorizIllumAll, dirNormIllumAll, diffEfficacyAll, dirNormEfficacyAll, solarAltitudeAll, solarAzimuthAll, diffHorizUnits, dirNormUnits = getTimeSeries(t_sqlFile, envPeriod) # check that we have all timeseries if !diffHorizIllumAll || !dirNormIllumAll || !diffEfficacyAll || !dirNormEfficacyAll || !solarAltitudeAll || !solarAzimuthAll runner.registerError('Missing required timeseries') exit false end simDateTimes, simTimes, diffHorizIllum, dirNormIllum, diffEfficacy, dirNormEfficacy, solarAltitude, solarAzimuth, firstReportDateTime = \ buildSimulationTimes(t_sqlFile, envPeriod, diffHorizIllumAll, dirNormIllumAll, diffEfficacyAll, dirNormEfficacyAll, solarAltitudeAll, solarAzimuthAll) simTimes.each_index do |i| datetime = simDateTimes[i] hours = ((datetime.date.dayOfYear - 1) * 24) + datetime.time.hours() values[i] = rawValues[hours] end end return values, dcVectors end # function renamed from execSimulation() to parseResults() def parseResults(t_cmds, t_space_names_to_calculate, t_spaceWidths, t_spaceHeights, t_radGlareSensorViews, t_radPath, runner, debug_mode) print_statement('Parsing daylighting results', runner) allValues = [] values = [] # read illuminance values from file values = [] valuesFile = File.open("#{t_radPath}/output/merged_space.ill") valuesFile.each do |row| values << row.split(' ') end allhours = [] # write out illuminance to individual space/map files 8760.times do |hour| index = 0 splitvalues = {} t_space_names_to_calculate.each do |space_name| space_size = t_spaceWidths[space_name] * t_spaceHeights[space_name] space = [] illum = [] glaresensors ||= {} # TODO: you can probably remove this glaresensors[space_name] ||= {} if !values.empty? subspace = values.slice(index, space_size) index += space_size print_statement("starting illuminance map for '#{space_name}'. space_size: #{space_size}, index is now at: #{index}, ", runner) if debug_mode && (hour == 0) space = [] subspace.each do |subspacevalue| space << subspacevalue[hour].to_f.round(1) end if File.exist?("#{t_radPath}/numeric/#{space_name}.sns") if index >= values.size print_statement("Index is #{index} but values.size is only #{values.size}", runner) elsif hour >= values[index].size print_statement("Hour is #{hour} but values.size[index] is only #{values[index].size}", runner) end illum = [values[index][hour].to_f.round(1)] index += 1 print_statement("finished space map and daylight sensor values, and index is now: #{index}", runner) if hour == 0 && debug_mode end # get ALL glare sensors for space if t_radGlareSensorViews[space_name] && !t_radGlareSensorViews[space_name].keys.empty? t_radGlareSensorViews[space_name].each do |sensor, views| sensor_index = t_radGlareSensorViews[space_name].keys.index(sensor) print_statement("glare sensor '#{sensor}' has #{views.size} views", runner) if hour == 0 && debug_mode views['view_definitions'].each_index do |view_index| print_statement("### DEBUG: index is #{index}; view_index is #{view_index}", runner) if hour == 0 && debug_mode t_radGlareSensorViews[space_name][sensor][hour] ||= {} t_radGlareSensorViews[space_name][sensor][hour]["#{sensor_index}_#{view_index}"] ||= {} view_values = values.slice(index, 1).first adjustedval = 0.00 if view_values[hour].to_f != 0.00 adjustedval = [(0.0000622 * view_values[hour].to_f) + 0.184, 0].max.round(2) end t_radGlareSensorViews[space_name][sensor][hour]["#{sensor_index}_#{view_index}"]['dgp'] = adjustedval.round(2) t_radGlareSensorViews[space_name][sensor][hour]["#{sensor_index}_#{view_index}"]['raw'] = view_values[hour].to_f.round(2) index += 1 end end end else print_statement("An error has occurred; no results for space '#{space_name}'.", runner) space = Array.new(space_size, 0) if File.exist?("#{t_radPath}/numeric/#{space_name}.sns") illum = Array.new(1, 0) end end # make an array that will have all the views splitvalues[space_name] = [space, illum] # iterate over each sensor and combine the views together new_hash = {} t_radGlareSensorViews[space_name]&.each do |sensor, v| new_hash[sensor] = v[hour] end splitvalues[space_name] += [new_hash] end allhours[hour] = splitvalues end allhours File.open('output/glare.json', 'w') { |f| f << JSON.pretty_generate(t_radGlareSensorViews) } File.open('output/radout.json', 'w') { |f| f << JSON.pretty_generate(all_hours: allhours) } print_statement('Returning annual results', runner) return allhours end def getTimeSeries(t_sqlFile, t_envPeriod) diffHorizIllumAll = []; dirNormIllumAll = [] diffEfficacyAll = []; dirNormEfficacyAll = [] solarAltitudeAll = []; solarAzimuthAll = [] diffHorizUnits = nil; dirNormUnits = nil # get the solar data t_sqlFile.timeSeries(t_envPeriod, 'Hourly', 'Site Exterior Horizontal Sky Illuminance').each do |timeseries| diffHorizIllumAll = timeseries.values diffHorizUnits = timeseries.units if !diffHorizUnits end t_sqlFile.timeSeries(t_envPeriod, 'Hourly', 'Site Exterior Beam Normal Illuminance').each do |timeseries| dirNormIllumAll = timeseries.values dirNormUnits = timeseries.units if !dirNormUnits end t_sqlFile.timeSeries(t_envPeriod, 'Hourly', 'Site Sky Diffuse Solar Radiation Luminous Efficacy').each do |timeseries| diffEfficacyAll = timeseries.values diffEfficacyUnits = timeseries.units if !diffEfficacyUnits end t_sqlFile.timeSeries(t_envPeriod, 'Hourly', 'Site Beam Solar Radiation Luminous Efficacy').each do |timeseries| dirNormEfficacyAll = timeseries.values dirNormEfficacyUnits = timeseries.units if !dirNormEfficacyUnits end t_sqlFile.timeSeries(t_envPeriod, 'Hourly', 'Site Solar Altitude Angle').each do |timeseries| solarAltitudeAll = timeseries.values solarAltitudeUnits = timeseries.units if !solarAltitudeUnits end t_sqlFile.timeSeries(t_envPeriod, 'Hourly', 'Site Solar Azimuth Angle').each do |timeseries| solarAzimuthAll = timeseries.values solarAzimuthUnits = timeseries.units if !solarAzimuthUnits end return diffHorizIllumAll, dirNormIllumAll, diffEfficacyAll, dirNormEfficacyAll, solarAltitudeAll, solarAzimuthAll, diffHorizUnits, dirNormUnits end def buildSimulationTimes(t_sqlFile, t_envPeriod, t_diffHorizIllumAll, t_dirNormIllumAll, t_diffEfficacyAll, t_dirNormEfficacyAll, t_solarAltitudeAll, t_solarAzimuthAll) # we want simulation at these indices only simDateTimes = OpenStudio::DateTimeVector.new simTimes = [] diffHorizIllum = [] dirNormIllum = [] diffEfficacy = [] dirNormEfficacy = [] solarAltitude = [] solarAzimuth = [] firstReportDateTime = nil t_sqlFile.timeSeries(t_envPeriod, 'Hourly', 'Site Exterior Horizontal Sky Illuminance').each do |timeseries| firstReportDateTime = timeseries.firstReportDateTime daysFromFirstReport = timeseries.daysFromFirstReport (0...daysFromFirstReport.size).each do |i| dateTime = firstReportDateTime + OpenStudio::Time.new(daysFromFirstReport[i]) # - 0.5/24.0 subtract 1/2 hr to center of interval if dateTime.time.seconds == 59 # rounding error, let's help dateTime += OpenStudio::Time.new(0, 0, 0, 1) end if dateTime.time.seconds == 1 # rounding error, let's help dateTime -= OpenStudio::Time.new(0, 0, 0, 1) end simTimes << "#{dateTime.date.monthOfYear.value} #{dateTime.date.dayOfMonth} #{dateTime.time}" simDateTimes << dateTime diffHorizIllum << t_diffHorizIllumAll[i] dirNormIllum << t_dirNormIllumAll[i] diffEfficacy << t_diffEfficacyAll[i] dirNormEfficacy << t_dirNormEfficacyAll[i] solarAltitude << t_solarAltitudeAll[i] solarAzimuth << t_solarAzimuthAll[i] end end return simDateTimes, simTimes, diffHorizIllum, dirNormIllum, diffEfficacy, dirNormEfficacy, solarAltitude, solarAzimuth, firstReportDateTime end def writeTimeSeriesToSql(sqlfile, simDateTimes, illum, space_name, ts_name, ts_units) data = OpenStudio::Vector.new(illum.length) illum.length.times do |n| data[n] = illum[n].to_f rescue Exception => e print_statement('Error inserting data: ' + illum[n] + ' inserting 0 instead', runner) data[n] = 0 end illumTS = OpenStudio::TimeSeries.new(simDateTimes, data, ts_units) sqlfile.insertTimeSeriesData( 'Average', 'Zone', 'Zone', space_name, ts_name, OpenStudio::ReportingFrequency.new('Hourly'), OpenStudio::OptionalString.new, ts_units, illumTS ) end def annualSimulation(t_sqlFile, t_epwFile, t_space_names_to_calculate, t_radMaps, t_spaceWidths, t_spaceHeights, t_radMapPoints, \ t_radGlareSensorViews, t_simCores, t_site_latitude, t_site_longitude, t_site_stdmeridian, t_outPath, t_building, t_values, t_dcVectors, runner) sqlOutPath = OpenStudio::Path.new("#{Dir.pwd}/output/radout.sql") if OpenStudio.exists(sqlOutPath) OpenStudio.remove(sqlOutPath) end # for each environment period (design days, annual, or arbitrary) you will create a directory for results t_sqlFile.availableEnvPeriods.each do |envPeriod| print_statement("envPeriod = '" + envPeriod.to_s + "'", runner) diffHorizIllumAll, dirNormIllumAll, diffEfficacyAll, dirNormEfficacyAll, solarAltitudeAll, solarAzimuthAll, diffHorizUnits, dirNormUnits = getTimeSeries(t_sqlFile, envPeriod) # check that we have all timeseries if !diffHorizIllumAll || !dirNormIllumAll || !diffEfficacyAll || !dirNormEfficacyAll || !solarAltitudeAll || !solarAzimuthAll runner.registerError('Missing required timeseries') exit false end # make timeseries simDateTimes, simTimes, diffHorizIllum, dirNormIllum, diffEfficacy, dirNormEfficacy, solarAltitude, solarAzimuth, firstReportDateTime = \ buildSimulationTimes(t_sqlFile, envPeriod, diffHorizIllumAll, dirNormIllumAll, diffEfficacyAll, dirNormEfficacyAll, solarAltitudeAll, solarAzimuthAll) sqlOutFile = OpenStudio::SqlFile.new(sqlOutPath, t_epwFile, OpenStudio::DateTime.now, OpenStudio::Calendar.new(firstReportDateTime.date.year)) sqlOutFile.removeIndexes t_space_names_to_calculate.each do |space_name| illuminanceMatrixMaps = OpenStudio::MatrixVector.new daylightSensorIlluminance = [] meanIlluminanceMap = [] minDGP = [] meanDGP = [] maxDGP = [] print_statement("Processing space '#{space_name}'", runner) timeSeriesIllum = [] timeSeriesGlare = [] simTimes.each_index do |i| spaceWidth = t_spaceWidths[space_name] spaceHeight = t_spaceHeights[space_name] illuminanceMatrixMaps << OpenStudio::Matrix.new(spaceWidth, spaceHeight, 0) daylightSensorIlluminance << 0 meanIlluminanceMap << 0 minDGP << 0 meanDGP << 0 maxDGP << 0 # these must be declared in the thread otherwise will get overwritten on each loop tsDateTime = simTimes[i] # Split up values by space illumValues, illumSensorValues, glareSensorValues = t_values[i][space_name] # Debug # File.open('glareSensorValues.out', 'w') { |f| f.write(glareSensorValues.to_s) } timeSeriesIllum[i] = tsDateTime.to_s.tr(' ', ',') + ',' + "#{dirNormIllum[i]},#{diffHorizIllum[i]}," + illumSensorValues.join(',') + ',' + illumValues.join(',') # add glare sensor values if t_radGlareSensorViews[space_name] if !glareSensorValues.nil? timeSeriesGlare[i] = tsDateTime.to_s.tr(' ', ',') glareSensorValues.each_key do |key| glare_values = glareSensorValues[key].map { |_, v| v['dgp'] } timeSeriesGlare[i] += ",#{key},#{glare_values.average.round(2)},#{glare_values.min.round(2)},#{glare_values.max.round(2)},raw,#{glare_values.join(',')}" end end end m = OpenStudio::Matrix.new(spaceWidth, spaceHeight, 0) if !illumSensorValues.empty? daylightSensorIlluminance[i] = illumSensorValues[0] end n = 0 sumIllumMap = 0 illumValues.each do |val| x = (n % spaceWidth).to_i y = (n / spaceWidth).to_i sumIllumMap += val.to_f m[x, y] = val.to_f n += 1 end illuminanceMatrixMaps[i] = m if n != 0 meanIlluminanceMap[i] = sumIllumMap / n.to_f end end # Write results FileUtils.mkdir_p("#{Dir.pwd}/output/ts/#{space_name}/maps") unless File.exist?("#{Dir.pwd}/output/ts/#{space_name}/maps") f = File.open("#{Dir.pwd}/output/ts/#{space_name}/maps/#{space_name}_map.ill", 'w') space = nil t_building.spaces.each do |s| this_name = s.name.get.tr(' ', '_').tr(':', '_') if this_name == space_name space = s break end end illuminanceMaps = space.illuminanceMaps # TODO: use all if not empty if !illuminanceMaps.empty? map = illuminanceMaps[0] xmin = map.originXCoordinate xmax = xmin + map.xLength nx = map.numberofXGridPoints ymin = map.originYCoordinate ymax = ymin + map.yLength ny = map.numberofYGridPoints z = map.originZCoordinate xSpacing = (xmax - xmin) / nx ySpacing = (ymax - ymin) / ny print_statement('Writing Radiance results file', runner) # illuminance to csv f.print "## OpenStudio Daylight Simulation Results file\n" f.print "## Header: xmin ymin z xmax ymin z xmax ymax z xspacing yspacing\n" f.print "## Data: month,day,time,directNormalIllumimance(external),diffuseHorizontalIlluminance(external),daylightSensorIlluminance,pointIlluminance [lux]\n" f.print "#{xmin} #{ymin} #{z} #{xmax} #{ymin} #{z} #{xmax} #{ymax} #{z} #{xSpacing} #{ySpacing}\n" timeSeriesIllum.each { |ts| f.print "#{ts}\n" } f.close # glare to csv FileUtils.mkdir_p("#{Dir.pwd}/output/ts/#{space_name}/maps") unless File.exist?("#{Dir.pwd}/output/ts/#{space_name}/maps") f = File.open("#{Dir.pwd}/output/ts/#{space_name}/maps/#{space_name}.glr", 'w') space = nil t_building.spaces.each do |s| this_name = s.name.get.tr(' ', '_').tr(':', '_') if this_name == space_name space = s break end end if t_radGlareSensorViews[space_name] f.print "## OpenStudio Daylight Simulation (glare) Results file\n" f.print "## Space name: '#{space_name}\n" f.print "## Data: month,day,time,sensor_name,DGPs(avg),DGPs(min),DGPs(max),raw,[raw values]...\n" timeSeriesGlare.each { |ts| f.print "#{ts}\n" } f.close end # all results to sql print_statement('Writing Radiance results database', runner) writeTimeSeriesToSql(sqlOutFile, simDateTimes, dirNormIllum, space_name, 'Direct Normal Illuminance', 'lux') writeTimeSeriesToSql(sqlOutFile, simDateTimes, diffHorizIllum, space_name, 'Global Horizontal Illuminance', 'lux') writeTimeSeriesToSql(sqlOutFile, simDateTimes, daylightSensorIlluminance, space_name, 'Daylight Sensor Illuminance', 'lux') writeTimeSeriesToSql(sqlOutFile, simDateTimes, meanIlluminanceMap, space_name, 'Mean Illuminance Map', 'lux') # I really have no idea how to populate these fields sqlOutFile.insertZone(space_name, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, true) xs = OpenStudio::DoubleVector.new nx.times do |n| xs << xmin + (n * xSpacing) end ys = OpenStudio::DoubleVector.new ny.times do |n| ys << ymin + (n * ySpacing) end sqlOutFile.insertIlluminanceMap(space_name, space_name + ' DAYLIGHT MAP', t_epwFile.wmoNumber, simDateTimes, xs, ys, map.originZCoordinate, illuminanceMatrixMaps) end end sqlOutFile.createIndexes sqlOutFile.close end end # makeSchedules() # write new lighting power schedules for the model def makeSchedules(model, sqlFile, runner) print_statement('Updating lighting load schedules', runner) # only run period in pre process job environmentName = 'Run Period 1' # loop through each thermal zone model.getThermalZones.each do |thermalZone| spaces = thermalZone.spaces if spaces.empty? print_statement("ThermalZone '#{thermalZone.name}' has no spaces, skipping.", runner) next end # get people schedule for zone # TODO: require people for occupancy controls peopleTimeseries = sqlFile.timeSeries('Run Period 1'.upcase, 'Hourly', 'Zone People Occupant Count', thermalZone.name.get.upcase) if peopleTimeseries.empty? print_statement("Cannot find timeseries 'Zone People Occupant Count' for ThermalZone '#{thermalZone.name}'.", runner) end # get lights schedule for zone lightsTimeseries = sqlFile.timeSeries('Run Period 1'.upcase, 'Hourly', 'Zone Lights Electric Power', thermalZone.name.get.upcase) if lightsTimeseries.empty? newname = thermalZone.name.get.sub(/^OS:/, '') print_statement("Cannot find timeseries 'Zone Lights Electric Power' for ThermalZone '#{thermalZone.name}', skipping.", runner) next end lightsTimeseries = lightsTimeseries.get # get illuminance map illuminanceMap = thermalZone.illuminanceMap if illuminanceMap.empty? print_statement("Cannot find IlluminanceMap for ThermalZone '#{thermalZone.name}', skipping.", runner) next end illuminanceMap = illuminanceMap.get # get the space space = illuminanceMap.space if space.empty? print_statement("Cannot find Space for IlluminanceMap '#{illuminanceMap.name}' in ThermalZone '#{thermalZone.name}', skipping.", runner) next end space = space.get space_name = space.name.get.tr(' ', '_').tr(':', '_') radSqlPath = OpenStudio::Path.new('output/radout.sql') # load the illuminance map # assume this will be reported in 1 hour timesteps starting on 1/1 averageIlluminances = [] radSqlFile = OpenStudio::SqlFile.new(radSqlPath) # use the daylight sensor input spacename = space.name.get.tr(' ', '_').tr(':', '_') envPeriods = radSqlFile.availableEnvPeriods if envPeriods.empty? print_statement('No available environment periods in radiance sql file, skipping', runner) next end daylightSensor = radSqlFile.timeSeries(envPeriods[0], 'Hourly', 'Daylight Sensor Illuminance', space_name) if daylightSensor.empty? print_statement('Daylight sensor data could not be loaded, skipping', runner) next end values = daylightSensor.get.values values.length.times do |i| val = values[i] if val < 0 val = 0 end averageIlluminances << val # end end daylightSetpoint = 0.0 primaryDaylightingControl = thermalZone.primaryDaylightingControl if !primaryDaylightingControl.empty? daylightSetpoint = primaryDaylightingControl.get.illuminanceSetpoint end secondaryDaylightingControl = thermalZone.secondaryDaylightingControl if !secondaryDaylightingControl.empty? if daylightSetpoint == 0.0 daylightSetpoint = secondaryDaylightingControl.get.illuminanceSetpoint else print_statement("Ignoring secondary daylighting control in ThermalZone '#{thermalZone.name}'", runner) end end if daylightSetpoint == 0.0 space.daylightingControls.each do |i| daylightSetpoint = i.illuminanceSetpoint if daylightSetpoint != 0.0 break end end end if daylightSetpoint == 0.0 print_statement("Illuminance setpoint is not defined in Space '#{space.name}' or in ThermalZone '#{thermalZone.name}', skipping.", runner) next end print_statement("ThermalZone '#{thermalZone.name}' illuminance setpoint is: #{daylightSetpoint.round(0)} lux", runner) originalLightsValues = lightsTimeseries.values lightsValues = OpenStudio::Vector.new(averageIlluminances.size) averageIlluminances.each_index do |i| dimmingResponse = [(daylightSetpoint - averageIlluminances[i]) / daylightSetpoint, 0].max lightsValues[i] = dimmingResponse * originalLightsValues[i] end # get max lighting power lightingLevel = OpenStudio.maximum(lightsValues) if lightingLevel <= 0.0 print_statement("Thermal Zone '#{thermalZone.name}' lighting power is less than or equal to 0, skipping", runner) next end print_statement("Thermal Zone '#{thermalZone.name}' lighting power is: #{lightingLevel.round(0)} W", runner) # normalize lights values averageIlluminances.each_index do |i| lightsValues[i] = lightsValues[i] / lightingLevel end startDate = OpenStudio::Date.new(OpenStudio::MonthOfYear.new(1), 1) interval = OpenStudio::Time.new(0, 1, 0) timeseries = OpenStudio::TimeSeries.new(startDate, interval, lightsValues, 'W') schedule = OpenStudio::Model::ScheduleInterval.fromTimeSeries(timeseries, model) if schedule.empty? print_statement("Could not create modified lighting schedule for Thermal Zone '#{thermalZone.name}', skipping", runner) next end schedule = schedule.get schedule.setName(thermalZone.name.get + ' Lights Schedule') # remove all lights in this zone spaces.each do |space| space.hardApplySpaceType(true) space.lights.each(&:remove) space.luminaires.each(&:remove) end # add a new lights object to first space in this zone and set schedule lightsDefinition = OpenStudio::Model::LightsDefinition.new(model) lightsDefinition.setLightingLevel(lightingLevel) lights = OpenStudio::Model::Lights.new(lightsDefinition) lights.setSchedule(schedule) lights.setSpace(spaces[0]) end end def daylightMetrics(model, sqlFile, runner) # load the Radiance output data radoutPath = OpenStudio::Path.new('output/radout.sql') radoutPath = OpenStudio.system_complete(radoutPath) radoutFile = OpenStudio::SqlFile.new(radoutPath) if !sqlFile.connectionOpen print_statement("SqlFile #{sqlPath} connection is not open", runner) return false end $METHOD = 1 # get exterior illuminance timeseries from E+ run exteriorIlluminanceTimeseries = sqlFile.timeSeries('Run Period 1'.upcase, 'Hourly', 'Site Exterior Horizontal Sky Illuminance') # summary report string summary_report = '' building_average_space = [] building_average = '' building_average_space_cda = [] building_average_cda = '' building_average_space_udi = [] building_average_udi = '' # loop through all the spaces # building = model.getBuilding # building.spaces.each do |space| daylightAnalysisSpaces = [] spaces = model.getSpaces spaces.each do |sp| if !sp.illuminanceMaps.empty? daylightAnalysisSpaces << sp end end daylightAnalysisSpaces.each do |space| space_name = space.name.get.tr(' ', '_').tr(':', '_') thermalZone = space.thermalZone next if thermalZone.empty? thermalZone = thermalZone.get map_name = "#{space_name} DAYLIGHT MAP" map_index = radoutFile.illuminanceMapIndex(map_name) next if map_index.empty? daylightSetpoint = nil primaryDaylightingControl = thermalZone.primaryDaylightingControl if primaryDaylightingControl.empty? print_statement("Thermal Zone \"#{thermalZone}\" has no primary daylighting control, skipping", runner) next else daylightSetpoint = primaryDaylightingControl.get.illuminanceSetpoint end print_statement("Calculating Daylight Metrics for Space '#{space_name}'", runner) da_daylit = [] da_occupied = [] da_daylit_occupied = [] cda_daylit = [] cda_occupied = [] cda_daylit_occupied = [] udi_daylit = [] udi_occupied = [] udi_daylit_occupied = [] sda_credit = [] # get people timeseries from E+ run for this zone peopleTimeseries = sqlFile.timeSeries('Run Period 1'.upcase, 'Hourly', 'Zone People Occupant Count', thermalZone.name.get.upcase) runner.registerWarning("No people schedule for space '#{space_name}'. Occupancy-based daylight metrics not calculated.") if peopleTimeseries.empty? # loop over all timesteps, return type is std::vector< std::pair > hourly_report_indices_dates = radoutFile.illuminanceMapHourlyReportIndicesDates(map_name) hourly_report_indices_dates.each do |hourly_report_index_date| # initialize metrics to nil for timestep da_daylit << nil da_occupied << nil da_daylit_occupied << nil cda_daylit << nil cda_occupied << nil cda_daylit_occupied << nil udi_daylit << nil udi_occupied << nil udi_daylit_occupied << nil sda_credit << nil # extract timestep and index hourly_report_index = hourly_report_index_date.first hourly_report_date = hourly_report_index_date.second # SDA credit hour? (using 8:00-17:00 as the qualifying range, to comply with the 10 hour/day, 3,650 annual hours expectation) sda_hour = false if hourly_report_date.to_s.split(' ')[1].split(':')[0].to_i >= 8 && hourly_report_date.to_s.split(' ')[1].split(':')[0].to_i <= 17 sda_hour = true end # daylit hour? daylit_hour = false if !exteriorIlluminanceTimeseries.empty? val = exteriorIlluminanceTimeseries[0].value(hourly_report_date) if val > 0 daylit_hour = true end end # occupied hour? occupied_hour = false if !peopleTimeseries.empty? val = peopleTimeseries.get.value(hourly_report_date) if val > 0 occupied_hour = true end end da = 0 if $METHOD == 0 # get map values map_values = radoutFile.illuminanceMap(hourly_report_index) # compute number of map points with illuminance greater than setpoint size1 = map_values.size1 size2 = map_values.size2 num = size1 * size2 num_da = 0 for i in (0...size1) for j in (0...size2) map_value = map_values[i, j] if map_value >= daylightSetpoint num_da += 1 end end end da = num_da.to_f / num.to_f elsif $METHOD == 1 x = OpenStudio::DoubleVector.new y = OpenStudio::DoubleVector.new map_values = OpenStudio::DoubleVector.new radoutFile.illuminanceMap(hourly_report_index, x, y, map_values) # compute DA, conDA, UDI, and SDA num = map_values.size num_da = 0 num_cda = 0 num_udi = 0 num_sda = 0 map_values.each do |map_value| if map_value >= daylightSetpoint num_da += 1 num_cda += 1 end if map_value > 0 && map_value < daylightSetpoint num_cda += map_value / daylightSetpoint end if map_value >= 100 && map_value <= 3000 num_udi += 1 end if map_value >= 300 && sda_hour == true num_sda += 1 end end da = num_da.to_f / num.to_f cda = num_cda.to_f / num.to_f udi = num_udi.to_f / num.to_f sda = num_sda.to_f / num.to_f end # assign to timeseries if daylit_hour da_daylit[-1] = da cda_daylit[-1] = cda udi_daylit[-1] = udi end if occupied_hour da_occupied[-1] = da cda_occupied[-1] = cda udi_occupied[-1] = udi end if daylit_hour && occupied_hour da_daylit_occupied[-1] = da cda_daylit_occupied[-1] = cda udi_daylit_occupied[-1] = udi end if sda_hour sda_credit[-1] = sda end end # compute annual metrics for space # Daylight Autonomy da_daylit_sum = 0 da_daylit_num = 0 da_daylit.each do |da| if !da.nil? da_daylit_sum += da da_daylit_num += 1 end end annual_da_daylit = da_daylit_sum.to_f / da_daylit_num.to_f summary_report += "#{space_name},DA(#{daylightSetpoint.round(0)}),Daylit Hours,#{annual_da_daylit.round(2)},#{da_daylit_sum.round(0)},#{da_daylit_num}\n" if !peopleTimeseries.empty? da_occupied_sum = 0 da_occupied_num = 0 da_occupied.each do |da| if !da.nil? da_occupied_sum += da da_occupied_num += 1 end end # annual_da_occupied = (da_occupied_num == 0.0 || da_occupied_sum == 0.0) ? 0.0 : da_occupied_sum.to_f / da_occupied_num.to_f annual_da_occupied = da_occupied_sum.to_f / da_occupied_num.to_f summary_report += "#{space_name},DA(#{daylightSetpoint.round(0)}),Occupied Hours,#{annual_da_occupied.round(2)},#{da_occupied_sum.round(0)},#{da_occupied_num}\n" da_daylit_occupied_sum = 0 da_daylit_occupied_num = 0 da_daylit_occupied.each do |da| if !da.nil? da_daylit_occupied_sum += da da_daylit_occupied_num += 1 end end # annual_da_daylit_occupied = (da_daylit_occupied_num == 0.0 || da_daylit_occupied_sum == 0.0) ? 0.0 : da_daylit_occupied_sum.to_f / da_daylit_occupied_num.to_f annual_da_daylit_occupied = da_daylit_occupied_sum.to_f / da_daylit_occupied_num.to_f summary_report += "#{space_name},DA(#{daylightSetpoint.round(0)}),Daylit and Occupied Hours,#{annual_da_daylit_occupied.round(2)},#{da_daylit_occupied_sum.round(0)},#{da_daylit_occupied_num}\n" end # Continuous Daylight Autonomy cda_daylit_sum = 0 cda_daylit_num = 0 cda_daylit.each do |cda| if !cda.nil? cda_daylit_sum += cda cda_daylit_num += 1 end end annual_cda_daylit = cda_daylit_sum.to_f / cda_daylit_num.to_f summary_report += "#{space_name},conDA(#{daylightSetpoint.round(0)}),Daylit Hours,#{annual_cda_daylit.round(2)},#{cda_daylit_sum.round(0)},#{cda_daylit_num}\n" if !peopleTimeseries.empty? cda_occupied_sum = 0 cda_occupied_num = 0 cda_occupied.each do |cda| if !cda.nil? cda_occupied_sum += cda cda_occupied_num += 1 end end annual_cda_occupied = cda_occupied_sum.to_f / cda_occupied_num.to_f summary_report += "#{space_name},conDA(#{daylightSetpoint.round(0)}),Occupied Hours,#{annual_cda_occupied.round(2)},#{cda_occupied_sum.round(0)},#{cda_occupied_num}\n" cda_daylit_occupied_sum = 0 cda_daylit_occupied_num = 0 cda_daylit_occupied.each do |cda| if !cda.nil? cda_daylit_occupied_sum += cda cda_daylit_occupied_num += 1 end end annual_cda_daylit_occupied = cda_daylit_occupied_sum.to_f / cda_daylit_occupied_num.to_f summary_report += "#{space_name},conDA(#{daylightSetpoint.round(0)}),Daylit and Occupied Hours,#{annual_cda_daylit_occupied.round(2)},#{cda_daylit_occupied_sum.round(0)},#{cda_daylit_occupied_num}\n" end # Useful Daylight Illuminance udi_daylit_sum = 0 udi_daylit_num = 0 udi_daylit.each do |udi| if !udi.nil? udi_daylit_sum += udi udi_daylit_num += 1 end end annual_udi_daylit = udi_daylit_sum.to_f / udi_daylit_num.to_f summary_report += "#{space_name},UDI(100-3000),Daylit Hours,#{annual_udi_daylit.round(2)},#{udi_daylit_sum.round(0)},#{udi_daylit_num}\n" if !peopleTimeseries.empty? udi_occupied_sum = 0 udi_occupied_num = 0 udi_occupied.each do |udi| if !udi.nil? udi_occupied_sum += udi udi_occupied_num += 1 end end annual_udi_occupied = udi_occupied_sum.to_f / udi_occupied_num.to_f summary_report += "#{space_name},UDI(100-3000),Occupied Hours,#{annual_udi_occupied.round(2)},#{udi_occupied_sum.round(0)},#{udi_occupied_num}\n" udi_daylit_occupied_sum = 0 udi_daylit_occupied_num = 0 udi_daylit_occupied.each do |udi| if !udi.nil? udi_daylit_occupied_sum += udi udi_daylit_occupied_num += 1 end end annual_udi_daylit_occupied = udi_daylit_occupied_sum.to_f / udi_daylit_occupied_num.to_f summary_report += "#{space_name},UDI(100-3000),Daylit and Occupied Hours,#{annual_udi_daylit_occupied.round(2)},#{cda_daylit_occupied_sum.round(0)},#{cda_daylit_occupied_num}\n" end # Spatial Daylight Autonomy (FWIW) sda_sum = 0 sda_num = 0 sda_credit.each do |sda| if !sda.nil? sda_sum += sda sda_num += 1 end end annual_sda = sda_sum.to_f / sda_num.to_f summary_report += "#{space_name},sDA(300),8AM-5PM (10 hours/day per IESNA LM-83-12),#{annual_sda.round(2)},#{sda_sum.round(0)},#{sda_num}\n" # Make building average metrics # DA building_average_space << annual_da_daylit # cDA building_average_space_cda << annual_cda_daylit # UDI building_average_space_udi << annual_udi_daylit end # DLM: can we make some more metrics that are area weighted rather than just space weighted? building_average_space_sum = 0.0 building_average_space.each { |e| building_average_space_sum += e } building_average_space_cda_sum = 0.0 building_average_space_cda.each { |e| building_average_space_cda_sum += e } building_average_space_udi_sum = 0.0 building_average_space_udi.each { |e| building_average_space_udi_sum += e } # catch zero condition if building_average_space_sum == 0.0 building_average = 0.0 building_average_cda = 0.0 building_average_udi = 0.0 print_statement('Warning: Daylight Autonomy for building is zero, check daylighting control point(s) setup.', runner) else building_average = building_average_space_sum / building_average_space.length runner.registerValue('DA', building_average.round(2)) building_average_cda = building_average_space_cda_sum / building_average_space_cda.length runner.registerValue('cDA', building_average_cda.round(2)) building_average_udi = building_average_space_udi_sum / building_average_space_udi.length runner.registerValue('UDI', building_average_udi.round(2)) end File.open('output/daylight_metrics.csv', 'w') do |file| file.puts '# OpenStudio Daylight Metrics Report' file.puts "# Building average daylight metrics (daylit spaces): DA = #{building_average.round(2)} cDA = #{building_average_cda.round(2)} UDI = #{building_average_udi.round(2)}" file.puts '#[space_name],[metric(setpoint)],[input_hours_range],[metric_value],[hours_met],[input_hours]' file.puts summary_report end end def genImages(radPath, runner, site_latitude, site_longitude, site_meridian, catCommand, debug_mode) print_statement('Generating images', runner) # generate some equinox skies for renderings, so we have them. (Sol voce) ['09', '12', '15'].each do |hour| exec_statement("gensky 03 21 #{hour} -a #{site_latitude} -o #{site_longitude} -m #{site_meridian} +s > skies/render_sky_input", runner) File.open('skies/render_sky_skyfuncs', 'w') do |file| # blue sky file.puts "skyfunc glow skyglow\n0\n0\n4 0.900 0.900 1.150 0\n\n" file.puts "skyglow source sky\n0\n0\n4 0 0 1 180\n\n" # brown ground file.puts "skyfunc glow groundglow\n0\n0\n4 1.400 0.900 0.600 0\n\n" file.puts "groundglow source ground\n0\n0\n4 0 0 -1 180\n\n" end exec_statement("#{catCommand} skies/render_sky_input skies/render_sky_skyfuncs > skies/site_0321_#{hour}.sky", runner) end image_hour = '09' # preset hour # make octree rad_command = "oconv materials/materials.rad model.rad skies/site_0321_#{image_hour}.sky > octrees/images.oct" exec_statement(rad_command, runner) # do views # daylighting control views, unfiltered views_daylighting_control = Dir.glob('views/*_dc.vfh') views_daylighting_control.each do |dc| rad_command = "rpict -av .3 .3 .3 -ab 1 -vf #{dc} octrees/images.oct | ra_bmp - #{dc}_#{image_hour}.bmp" exec_statement(rad_command, runner) if debug_mode # do "debug" images (individual window groups) debug_images = Dir.glob('octrees/debug*.oct') debug_images.each do |debug| condition = debug.split('/')[1].split('.')[0] exec_statement("oconv -i #{debug} skies/site_0321_#{image_hour}.sky > octrees/debug_temp.oct", runner) exec_statement("rpict -av .3 .3 .3 -ab 1 -vf #{dc} octrees/debug_temp.oct | ra_bmp - #{dc}_#{condition}_#{image_hour}_DEBUG.bmp", runner) end end end # glare sensor views are tonemapped views_glare_sensor = Dir.glob('views/*_gs.vfv') views_glare_sensor.each do |gv| rad_command = "rpict -av .3 .3 .3 -ab 1 -vf #{gv} octrees/images.oct > temp.hdr" exec_statement(rad_command, runner) rad_command = "pcond -h temp.hdr | ra_bmp - #{gv}.bmp" exec_statement(rad_command, runner) FileUtils.rm_f('temp.hdr') end end ## ## ## ## ## ## # actually do the thing sqlOutFile = '' radoutFile = '' # settle in, it's gonna be a bumpy ride... Dir.chdir(radPath.to_s) print_statement("Working directory: '#{Dir.pwd}'", runner) weather_file = nil weather_file_path = nil sqlPath = nil if got_2x weather_file = model.getOptionalWeatherFile weather_file_path = weather_file.get.path weather_file_path = runner.workflow.findFile(weather_file_path.get) if weather_file_path.empty? runner.registerError("Cannot find weather file '#{weather_file_path.get}'") return false end weather_file_path = weather_file_path.get sqlPath = OpenStudio::Path.new('sql/eplusout.sql') sqlPath = OpenStudio.system_complete(sqlPath) else # try runner first if runner.lastEpwFilePath.is_initialized test = runner.lastEpwFilePath.get.to_s if File.exist?(test) weather_file_path = test end end # try model second if !weather_file_path if model.weatherFile.is_initialized test = model.weatherFile.get.path if test.is_initialized # have a file name from the model if File.exist?(test.get.to_s) weather_file_path = test.get else # If this is an always-run Measure, need to check for file in different path alt_weath_path = File.expand_path(File.join(File.dirname(__FILE__), \ '../../../resources')) alt_epw_path = File.expand_path(File.join(alt_weath_path, test.get.to_s)) server_epw_path = File.expand_path(File.join(File.dirname(__FILE__), \ "../../weather/#{File.basename(test.get.to_s)}")) if File.exist?(alt_epw_path) weather_file_path = OpenStudio::Path.new(alt_epw_path) elsif File.exist? server_epw_path weather_file_path = OpenStudio::Path.new(server_epw_path) else runner.registerError("Model has been assigned a weather file, but the file is not in \ the specified location of '#{test.get}'. server_epw_path: #{server_epw_path}, test \ basename: #{File.basename(test.get.to_s)}, test: #{test}") return false end end else runner.registerError('Model has a weather file assigned, but the weather file path has \ been deleted.') return false end else runner.registerError('Model has not been assigned a weather file.') return false end end sqlPath = OpenStudio::Path.new('sql/eplusout.sql') sqlPath = OpenStudio.system_complete(sqlPath) end weather_file = OpenStudio::EpwFile.load(weather_file_path) if weather_file.empty? runner.registerError("Cannot load weather file '#{weather_file_path.get}'") return false end weather_file = weather_file.get # load the sql file sqlFile = OpenStudio::SqlFile.new(sqlPath) if !sqlFile.connectionOpen runner.registerError("SqlFile #{sqlPath} connection is not open") return false end # set the sql file model.setSqlFile(sqlFile) if model.sqlFile.empty? runner.registerError("Model's SqlFile is not initialized") return false end # get the top level simulation object simulation = model.getSimulationControl # reduce/convert epw data to Daysim-style ".wea" input format exec_statement("epw2wea \"#{weather_file_path}\" wx/in.wea", runner) site = model.getSite site_name = site.name.to_s site_latitude = site.latitude site_longitude = site.longitude site_meridian = site.timeZone.to_f * 15 # get the facility and building facility = model.getFacility building = model.getBuilding building_transformation = building.transformation # create space geometry, hash of space name to file contents radSpaces = {} radSensors = {} radGlareSensorViews = {} radMaps = {} radMapHandles = {} radMapPoints = {} radViewPoints = {} radDaylightingControls = {} radDaylightingControlPoints = {} spaceWidths = {} spaceHeights = {} # loop through the model space_names = [] building.spaces.each do |space| space_name = space.name.get.tr(' ', '_').tr(':', '_') space_names << space_name space_transformation = space.transformation # get output illuminance map points space.illuminanceMaps.each do |map| radMaps[space_name] = '' radMapHandles[space_name] = map.handle radMapPoints[space_name] = OpenStudio::Radiance::RadianceForwardTranslator.getReferencePoints(map) spaceWidths[space_name] = map.numberofXGridPoints spaceHeights[space_name] = map.numberofYGridPoints end # get daylighting control points space.daylightingControls.each do |control| radDaylightingControls[space_name] = '' radDaylightingControlPoints[space_name] = OpenStudio::Radiance::RadianceForwardTranslator.getReferencePoint(control) end # get glare sensors print_statement("### DEBUG: there are #{space.glareSensors.size} glare sensors in this space ('#{space_name}')", runner) if debug_mode space.glareSensors.each do |sensor| tmp_sensor_name = sensor.name.get.tr(' ', '_').tr(':', '_') radGlareSensorViews[space_name] ||= {} radGlareSensorViews[space_name][tmp_sensor_name] ||= {} radGlareSensorViews[space_name][tmp_sensor_name]['view_definitions'] = OpenStudio::Radiance::RadianceForwardTranslator.getViewVectors(sensor) print_statement("### DEBUG: glare sensor '#{tmp_sensor_name}' has #{OpenStudio::Radiance::RadianceForwardTranslator.getViewVectors(sensor).size} views.", runner) if debug_mode end end space_names_to_calculate = [] # only do spaces with illuminance maps space_names_to_calculate = [] space_names.each do |space_name| if !radMaps[space_name].nil? space_names_to_calculate << space_name end end # merge window group control points window_groups = Dir.glob('numeric/WG*.pts') if !window_groups.empty? File.open('numeric/window_controls.map', 'w') do |f| windows = Dir.glob('numeric/WG*.pts').sort windows.each do |wg| f.write IO.read(wg) end end end # merge calculation points File.open('numeric/merged_space.map', 'w') do |f| space_names_to_calculate.each do |space_name| f.write IO.read("numeric/#{space_name}.map") if File.exist?("numeric/#{space_name}.sns") f.write IO.read("numeric/#{space_name}.sns") end glare_sensors = Dir.glob("numeric/#{space_name}*.glr").sort if !glare_sensors.empty? glare_sensors.each do |sensor| print_statement("added glare sensor '#{sensor}' to calculation points", runner) f.write IO.read(sensor) end end end end runner.registerInfo("'Cleanup data' option selected, will delete ancillary Radiance data and all Radiance input files, post-simulation.") if debug_mode && cleanup_data # # get the daylight coefficient matrices calculateDaylightCoeffecients(radPath, sim_cores, catCommand, options_tregVars, options_klemsDensity, options_skyvecDensity, options_dmx, options_vmx, rad_settings, procsUsed, runner, debug_mode) # make merged building-wide illuminance schedule(s) values, dcVectors = runSimulation(space_names_to_calculate, sqlFile, sim_cores, options_skyvecDensity, site_latitude, site_longitude, site_meridian, radPath, spaceWidths, spaceHeights, radGlareSensorViews, runner, debug_mode) # make space-level illuminance schedules and radout.sql results database # hoping this is no longer necessary... annualSimulation(sqlFile, weather_file, space_names_to_calculate, radMaps, spaceWidths, spaceHeights, radMapPoints, radGlareSensorViews, sim_cores, site_latitude, site_longitude, site_meridian, radPath, building, values, dcVectors, runner) # make new lighting power schedules based on Radiance daylight data if apply_schedules makeSchedules(model, sqlFile, runner) else print_statement("Lighting schedules have not been modified for daylighting ('Apply Schedules' option was not selected).", runner) end # compute daylight metrics for model daylightMetrics(model, sqlFile, runner) # remove illuminance map and daylighting controls from model, so they are not re-simulated in E+ print_statement('Removing daylighting controls for EnergyPlus run...', runner) model.getThermalZones.each do |thermalZone| thermalZone.resetPrimaryDaylightingControl thermalZone.resetSecondaryDaylightingControl thermalZone.resetIlluminanceMap end # make check images genImages(radPath, runner, site_latitude, site_longitude, site_meridian, catCommand, debug_mode) if debug_mode # cleanup FileUtils.rm_f('annual-sky.mtx') unless debug_mode rm_list = 'output/ts/m_*.ill', 'output/ts/window_controls.ill', 'output/ts/WG*.ill', 'octrees/*.oct', 'output/ts/*.shd' FileUtils.rm_f Dir.glob(rm_list) end if cleanup_data runner.registerInfo('Deleting most Radiance I/O to preserve disk space') runner.registerInfo('Deleting debug files') if debug_mode clean_list = 'bsdf', 'materials', 'numeric', 'octrees', 'options', 'scene', 'skies', 'sql', 'views', 'wx', 'output/dc', 'output/ts' FileUtils.rm_rf(clean_list) end # report initial condition of model daylightAnalysisSpaces = [] spaces = model.getSpaces spaces.each do |sp| if !sp.illuminanceMaps.empty? daylightAnalysisSpaces << sp end end runner.registerInitialCondition("Input building model contains #{model.getSpaces.size} spaces.") # report final condition of model runner.registerFinalCondition("Measure ran Radiance on the #{daylightAnalysisSpaces.size} spaces containing daylighting objects.") runner.registerInfo("End Encoding.default_external = #{Encoding.default_external}") runner.registerInfo("End Encoding.default_internal = #{Encoding.default_internal}") return true ensure Dir.chdir(current_dir) end end # register the measure RadianceMeasure.new.registerWithApplication