InfoObjects Logo

Infoobjects is a consulting company that helps enterprises transform how and where they run applications and infrastructure. From strategy, to implementation, to ongoing managed services, Infoobjects creates tailored cloud solutions for enterprises at all stages of the cloud journey.

# Postgres lookup filter plugin for Embulk [![license](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE) ​ An Embulk filter plugin for Lookup Transformation with Postgres database ​ - **postgres_lookup**: Required attributes for the LookUp Filter Plugin - - **driver_path**: driver path for your driver which you installed in your system (example `....Path..../jarname.jar`) - **driver_class**: driver class name (example `org.postgresql.Driver`) - **schema_name**: schema name (example `testSchema`) - **host**: database host (example `localhost`) (required) - **port**: database port (example port for postgres `1433`) (required) - **database**: database name (required) - **table_name**: table name of your database (required) - **username**: username for your database (required) - **password**: password for database (required) - **mapping_from**: (Name of columns to be matched with table 2 columns) (required) - **Name of column-1**: column name-1 from input file - **Name of column-2**: column name-2 from input file etc ... - **mapping_to**: (Name of columns to be matched with table 1 columns) (required) - **Name of column-1**: column name-1 from input file - **Name of column-2**: column name-2 from input file - **new_columns**: (New generated column names) (required) - **Name-1,Type-1**: Any Name, Type of the name (name: pin, type: string) - **Name-2,Type-2**: Any Name, Type of the name (name: gender, type: string) - **Name-3,Type-3**: Any Name, Type of the name (name: phone_number, type: string) etc ... ## Example - columns ​ Customer.csv for table 1 is as follows :- ``` id customer_name address email car_name company 1 John Doe 123 Main St, Anytown USA john.doe@example.com Civic Honda 2 Jane Smith 456 Elm St, Anytown USA jane.smith@example.com E-Class Mercedes-Benz 3 Bob Johnson 789 Oak St, Anytown USA bob.johnson@example.com GLE-Class Mercedes-Benz 4 Amanda Hernandez 999 Cedar St, Anytown USA amanda.hernandez@example.com 911 119 5 Tom Brown 567 Pine St, Anytown USA tom.brown@example.com C-Class Mercedes-Benz 6 Samantha Davis 890 Cedar St, Anytown USA samantha.davis@example.com Civic Honda 7 Mike Wilson 1234 Spruce St, Anytown USA mike.wilson@example.com GLE-Class Mercedes-Benz 8 Jason Brown 888 Pine St, Anytown USA jason.brown@example.com 911 Porsche 9 David Rodriguez 9010 Oak St, Anytown USA david.rodriguez@example.com GLC-Class Mercedes-Benz 10 Mark Davis 666 Spruce St, Anytown USA mark.davis@example.com C-Class Mercedes-Benz 11 Chris Thompson 222 Cedar St, Anytown USA chris.thompson@example.com Cayenne Porsche 12 Linda Young 555 Birch St, Anytown USA linda.young@example.com RAV4 13 Kevin Hernandez 444 Maple St, Anytown USA kevin.hernandez@example.com 911 119 ``` Car.csv for table 2 is as follows :- ``` car_id model brand category fuel_capacity 87 GLE-Class Mercedes-Benz SUV 80 101 Cayenne Porsche SUV 75 119 911 Porsche Sports Car 64 205 Accord Honda Sedan 56 334 Pilot Honda SUV 70 434 CR-v Honda SUV 64 559 C-Class Mercedes-Benz Sedan 66 603 Civic Honda Sedan 42 697 E-Class Mercedes-Benz Sedan 72 812 GLC-Class Mercedes-Benz Sedan 68 ``` As shown in yaml below, columns mentioned in mapping_from will be mapped with columns mentioned in mapping_to ie: car_name : model company : brand After successful mapping an Output.csv file containing the columns mentioned in new_columns will be generated Output File generated :- ``` id customer_name address email car_name company car_id category fuel_capacity 1 John Doe 123 Main St, Anytown USA john.doe@example.com Civic Honda 603 Sedan 42 2 Jane Smith 456 Elm St, Anytown USA jane.smith@example.com E-Class Mercedes-Benz 697 Sedan 72 3 Bob Johnson 789 Oak St, Anytown USA bob.johnson@example.com GLE-Class Mercedes-Benz 87 SUV 80 4 Amanda Hernandez 999 Cedar St, Anytown USA amanda.hernandez@example.com 911 119 0 5 Tom Brown 567 Pine St, Anytown USA tom.brown@example.com C-Class Mercedes-Benz 559 Sedan 66 6 Samantha Davis 890 Cedar St, Anytown USA samantha.davis@example.com Civic Honda 603 Sedan 42 7 Mike Wilson 1234 Spruce St, Anytown USA mike.wilson@example.com GLE-Class Mercedes-Benz 87 SUV 80 8 Jason Brown 888 Pine St, Anytown USA jason.brown@example.com 911 Porsche 119 Sport Car 64 9 David Rodriguez 9010 Oak St, Anytown USA david.rodriguez@example.com GLC-Class Mercedes-Benz 812 SUV 68 10 Mark Davis 666 Spruce St, Anytown USA mark.davis@example.com C-Class Mercedes-Benz 559 Sedan 66 11 Chris Thompson 222 Cedar St, Anytown USA chris.thompson@example.com Cayenne Porsche 101 SUV 75 12 Linda Young 555 Birch St, Anytown USA linda.young@example.com RAV4 \N 0 13 Kevin Hernandez 444 Maple St, Anytown USA kevin.hernandez@example.com 911 119 0 ``` ​ ​ ​ ```yaml filters: - type: postgress_lookup host: localhost port: 5432 database: test username: postgres password: 1234 schema: public table_name: car mapping_from: - car_name - company mapping_to: - model - brand new_columns: - { name: car_id, type: string } - { name: category, type: string } - { name: fuel_capacity, type: string } ``` ​ Notes: 1. mapping_from attribute should be in the same order as mentioned in the input file. ​ 2. In case with JDBC plugin if any integer column returned as float/decimal then use to cast that column as long as below ``` column_options: id: {value_type: long} ``` 3. Matching columns data types must be int,long and String ## Development ​ Run example: ​ ``` $ ./gradlew package $ embulk run -I ./lib seed.yml ``` ​ Deployment Steps: ​ ``` Install ruby in your machine $ gem install gemcutter (For windows OS) ​ $ ./gradlew gemPush $ gem build NameOfYourPlugins (example: embulk-filter-postgress_lookup) $ gem push embulk-filter-postgress_lookup-0.1.0.gem (You will get this name after running above command) ``` ​ ​ Release gem: ​ ``` $ ./gradlew gemPush ``` ## Licensing InfoObjects [license](LICENSE) (MIT License)