module PropCheck ## # A `Generator` is a special kind of 'proc' that, # given a size an random number generator state, # will generate a (finite) LazyTree of output values: # # The root of this tree is the value to be used during testing, # and the children are 'smaller' values related to the root, # to be used during the shrinking phase. class Generator @@default_size = 10 @@default_rng = Random.new ## # Being a special kind of Proc, a Generator wraps a block. def initialize(&block) @block = block end ## # Given a `size` (integer) and a random number generator state `rng`, # generate a LazyTree. def generate(size = @@default_size, rng = @@default_rng) @block.call(size, rng) end ## # Generates a value, and only return this value # (drop information for shrinking) # # >> Generators.integer.call(1000, Random.new(42)) # => 126 def call(size = @@default_size, rng = @@default_rng) generate(size, rng).root end ## # Returns `num_of_samples` values from calling this Generator. # This is mostly useful for debugging if a generator behaves as you intend it to. def sample(num_of_samples = 10, size: @@default_size, rng: @@default_rng) num_of_samples.times.map do call(size, rng) end end ## # Creates a 'constant' generator that always returns the same value, # regardless of `size` or `rng`. # # Keen readers may notice this as the Monadic 'pure'/'return' implementation for Generators. # # >> Generators.integer.bind { |a| Generators.integer.bind { |b| Generator.wrap([a , b]) } }.call(100, Random.new(42)) # => [2, 79] def self.wrap(val) Generator.new { |_size, _rng| LazyTree.wrap(val) } end ## # Create a generator whose implementation depends on the output of another generator. # this allows us to compose multiple generators. # # Keen readers may notice this as the Monadic 'bind' (sometimes known as '>>=') implementation for Generators. # # >> Generators.integer.bind { |a| Generators.integer.bind { |b| Generator.wrap([a , b]) } }.call(100, Random.new(42)) # => [2, 79] def bind(&generator_proc) # Generator.new do |size, rng| # outer_result = generate(size, rng) # outer_result.map do |outer_val| # inner_generator = generator_proc.call(outer_val) # inner_generator.generate(size, rng) # end.flatten # end Generator.new do |size, rng| outer_result = self.generate(size, rng) outer_result.bind do |outer_val| inner_generator = generator_proc.call(outer_val) inner_generator.generate(size, rng) end end end ## # Creates a new Generator that returns a value by running `proc` on the output of the current Generator. # # >> Generators.choose(32..128).map(&:chr).call(10, Random.new(42)) # => "S" def map(&proc) Generator.new do |size, rng| result = self.generate(size, rng) result.map(&proc) end end ## # Creates a new Generator that only produces a value when the block `condition` returns a truthy value. def where(&condition) self.map do |result| if condition.call(*result) result else :"_PropCheck.filter_me" end end # self.map do |*result| # if condition.call(*result) # result # else # :'_PropCheck.filter_me' # end # end end end end