# WARNING ABOUT GENERATED CODE # # This file is generated. See the contributing guide for more information: # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md # # WARNING ABOUT GENERATED CODE require 'seahorse/client/plugins/content_length.rb' require 'aws-sdk-core/plugins/credentials_configuration.rb' require 'aws-sdk-core/plugins/logging.rb' require 'aws-sdk-core/plugins/param_converter.rb' require 'aws-sdk-core/plugins/param_validator.rb' require 'aws-sdk-core/plugins/user_agent.rb' require 'aws-sdk-core/plugins/helpful_socket_errors.rb' require 'aws-sdk-core/plugins/retry_errors.rb' require 'aws-sdk-core/plugins/global_configuration.rb' require 'aws-sdk-core/plugins/regional_endpoint.rb' require 'aws-sdk-core/plugins/endpoint_discovery.rb' require 'aws-sdk-core/plugins/endpoint_pattern.rb' require 'aws-sdk-core/plugins/response_paging.rb' require 'aws-sdk-core/plugins/stub_responses.rb' require 'aws-sdk-core/plugins/idempotency_token.rb' require 'aws-sdk-core/plugins/jsonvalue_converter.rb' require 'aws-sdk-core/plugins/client_metrics_plugin.rb' require 'aws-sdk-core/plugins/client_metrics_send_plugin.rb' require 'aws-sdk-core/plugins/signature_v4.rb' require 'aws-sdk-core/plugins/protocols/json_rpc.rb' Aws::Plugins::GlobalConfiguration.add_identifier(:textract) module Aws::Textract class Client < Seahorse::Client::Base include Aws::ClientStubs @identifier = :textract set_api(ClientApi::API) add_plugin(Seahorse::Client::Plugins::ContentLength) add_plugin(Aws::Plugins::CredentialsConfiguration) add_plugin(Aws::Plugins::Logging) add_plugin(Aws::Plugins::ParamConverter) add_plugin(Aws::Plugins::ParamValidator) add_plugin(Aws::Plugins::UserAgent) add_plugin(Aws::Plugins::HelpfulSocketErrors) add_plugin(Aws::Plugins::RetryErrors) add_plugin(Aws::Plugins::GlobalConfiguration) add_plugin(Aws::Plugins::RegionalEndpoint) add_plugin(Aws::Plugins::EndpointDiscovery) add_plugin(Aws::Plugins::EndpointPattern) add_plugin(Aws::Plugins::ResponsePaging) add_plugin(Aws::Plugins::StubResponses) add_plugin(Aws::Plugins::IdempotencyToken) add_plugin(Aws::Plugins::JsonvalueConverter) add_plugin(Aws::Plugins::ClientMetricsPlugin) add_plugin(Aws::Plugins::ClientMetricsSendPlugin) add_plugin(Aws::Plugins::SignatureV4) add_plugin(Aws::Plugins::Protocols::JsonRpc) # @overload initialize(options) # @param [Hash] options # @option options [required, Aws::CredentialProvider] :credentials # Your AWS credentials. This can be an instance of any one of the # following classes: # # * `Aws::Credentials` - Used for configuring static, non-refreshing # credentials. # # * `Aws::InstanceProfileCredentials` - Used for loading credentials # from an EC2 IMDS on an EC2 instance. # # * `Aws::SharedCredentials` - Used for loading credentials from a # shared file, such as `~/.aws/config`. # # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role. # # When `:credentials` are not configured directly, the following # locations will be searched for credentials: # # * `Aws.config[:credentials]` # * The `:access_key_id`, `:secret_access_key`, and `:session_token` options. # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'] # * `~/.aws/credentials` # * `~/.aws/config` # * EC2 IMDS instance profile - When used by default, the timeouts are # very aggressive. Construct and pass an instance of # `Aws::InstanceProfileCredentails` to enable retries and extended # timeouts. # # @option options [required, String] :region # The AWS region to connect to. The configured `:region` is # used to determine the service `:endpoint`. When not passed, # a default `:region` is search for in the following locations: # # * `Aws.config[:region]` # * `ENV['AWS_REGION']` # * `ENV['AMAZON_REGION']` # * `ENV['AWS_DEFAULT_REGION']` # * `~/.aws/credentials` # * `~/.aws/config` # # @option options [String] :access_key_id # # @option options [Boolean] :active_endpoint_cache (false) # When set to `true`, a thread polling for endpoints will be running in # the background every 60 secs (default). Defaults to `false`. # # @option options [Boolean] :client_side_monitoring (false) # When `true`, client-side metrics will be collected for all API requests from # this client. # # @option options [String] :client_side_monitoring_client_id ("") # Allows you to provide an identifier for this client which will be attached to # all generated client side metrics. Defaults to an empty string. # # @option options [Integer] :client_side_monitoring_port (31000) # Required for publishing client metrics. The port that the client side monitoring # agent is running on, where client metrics will be published via UDP. # # @option options [Aws::ClientSideMonitoring::Publisher] :client_side_monitoring_publisher (Aws::ClientSideMonitoring::Publisher) # Allows you to provide a custom client-side monitoring publisher class. By default, # will use the Client Side Monitoring Agent Publisher. # # @option options [Boolean] :convert_params (true) # When `true`, an attempt is made to coerce request parameters into # the required types. # # @option options [Boolean] :disable_host_prefix_injection (false) # Set to true to disable SDK automatically adding host prefix # to default service endpoint when available. # # @option options [String] :endpoint # The client endpoint is normally constructed from the `:region` # option. You should only configure an `:endpoint` when connecting # to test endpoints. This should be avalid HTTP(S) URI. # # @option options [Integer] :endpoint_cache_max_entries (1000) # Used for the maximum size limit of the LRU cache storing endpoints data # for endpoint discovery enabled operations. Defaults to 1000. # # @option options [Integer] :endpoint_cache_max_threads (10) # Used for the maximum threads in use for polling endpoints to be cached, defaults to 10. # # @option options [Integer] :endpoint_cache_poll_interval (60) # When :endpoint_discovery and :active_endpoint_cache is enabled, # Use this option to config the time interval in seconds for making # requests fetching endpoints information. Defaults to 60 sec. # # @option options [Boolean] :endpoint_discovery (false) # When set to `true`, endpoint discovery will be enabled for operations when available. Defaults to `false`. # # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default) # The log formatter. # # @option options [Symbol] :log_level (:info) # The log level to send messages to the `:logger` at. # # @option options [Logger] :logger # The Logger instance to send log messages to. If this option # is not set, logging will be disabled. # # @option options [String] :profile ("default") # Used when loading credentials from the shared credentials file # at HOME/.aws/credentials. When not specified, 'default' is used. # # @option options [Float] :retry_base_delay (0.3) # The base delay in seconds used by the default backoff function. # # @option options [Symbol] :retry_jitter (:none) # A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number. # # @see https://www.awsarchitectureblog.com/2015/03/backoff.html # # @option options [Integer] :retry_limit (3) # The maximum number of times to retry failed requests. Only # ~ 500 level server errors and certain ~ 400 level client errors # are retried. Generally, these are throttling errors, data # checksum errors, networking errors, timeout errors and auth # errors from expired credentials. # # @option options [Integer] :retry_max_delay (0) # The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function. # # @option options [String] :secret_access_key # # @option options [String] :session_token # # @option options [Boolean] :simple_json (false) # Disables request parameter conversion, validation, and formatting. # Also disable response data type conversions. This option is useful # when you want to ensure the highest level of performance by # avoiding overhead of walking request parameters and response data # structures. # # When `:simple_json` is enabled, the request parameters hash must # be formatted exactly as the DynamoDB API expects. # # @option options [Boolean] :stub_responses (false) # Causes the client to return stubbed responses. By default # fake responses are generated and returned. You can specify # the response data to return or errors to raise by calling # {ClientStubs#stub_responses}. See {ClientStubs} for more information. # # ** Please note ** When response stubbing is enabled, no HTTP # requests are made, and retries are disabled. # # @option options [Boolean] :validate_params (true) # When `true`, request parameters are validated before # sending the request. # def initialize(*args) super end # @!group API Operations # Analyzes an input document for relationships in the detected text and # tables. # # Two types of information are returned: # # * Words and lines that are related to nearby lines and words. The # related information is returned in two Block objects: a KEY Block # object and a VALUE Block object. For example, *Name: Ana Silva # Carolina* contains a key and value. *Name:* is the key. *Ana Silva # Carolina* is the value. # # * Table and table cell data. A TABLE Block contains information about # a detected table. A CELL block is returned for each cell in a table. # # You can choose which type of analysis to perform by specifying the # `FeatureTypes` list. # # The output is returned in a list of `BLOCK` objects (Blocks). For more # information, see how-it-works-analyzing. # # `AnalyzeDocument` is a synchronous operation. To analyze documents # asynchronously, use StartDocumentAnalysis. # # @option params [required, Types::Document] :document # The input document as base64-encoded bytes or an Amazon S3 object. If # you use the AWS CLI to call Amazon Textract operations, you can't # pass image bytes. The document must be an image in JPG or PNG format. # # @option params [required, Array] :feature_types # A list of the types of analysis to perform. Add TABLES to the list to # return information about the tables detected in the input document. # Add FORMS to return detected fields and the associated text. To # perform both types of analysis, add TABLES and FORMS to # `FeatureTypes`. # # @return [Types::AnalyzeDocumentResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::AnalyzeDocumentResponse#document_metadata #document_metadata} => Types::DocumentMetadata # * {Types::AnalyzeDocumentResponse#blocks #blocks} => Array<Types::Block> # # @example Request syntax with placeholder values # # resp = client.analyze_document({ # document: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # feature_types: ["TABLES"], # required, accepts TABLES, FORMS # }) # # @example Response structure # # resp.document_metadata.pages #=> Integer # resp.blocks #=> Array # resp.blocks[0].block_type #=> String, one of "KEY_VALUE_SET", "PAGE", "LINE", "WORD", "TABLE", "CELL" # resp.blocks[0].confidence #=> Float # resp.blocks[0].text #=> String # resp.blocks[0].row_index #=> Integer # resp.blocks[0].column_index #=> Integer # resp.blocks[0].row_span #=> Integer # resp.blocks[0].column_span #=> Integer # resp.blocks[0].geometry.bounding_box.width #=> Float # resp.blocks[0].geometry.bounding_box.height #=> Float # resp.blocks[0].geometry.bounding_box.left #=> Float # resp.blocks[0].geometry.bounding_box.top #=> Float # resp.blocks[0].geometry.polygon #=> Array # resp.blocks[0].geometry.polygon[0].x #=> Float # resp.blocks[0].geometry.polygon[0].y #=> Float # resp.blocks[0].id #=> String # resp.blocks[0].relationships #=> Array # resp.blocks[0].relationships[0].type #=> String, one of "VALUE", "CHILD" # resp.blocks[0].relationships[0].ids #=> Array # resp.blocks[0].relationships[0].ids[0] #=> String # resp.blocks[0].entity_types #=> Array # resp.blocks[0].entity_types[0] #=> String, one of "KEY", "VALUE" # resp.blocks[0].page #=> Integer # # @see http://docs.aws.amazon.com/goto/WebAPI/textract-2018-06-27/AnalyzeDocument AWS API Documentation # # @overload analyze_document(params = {}) # @param [Hash] params ({}) def analyze_document(params = {}, options = {}) req = build_request(:analyze_document, params) req.send_request(options) end # Detects text in the input document. Amazon Textract can detect lines # of text and the words that make up a line of text. The input document # must be an image in JPG or PNG format. `DetectDocumentText` returns # the detected text in an array of Block objects. For more information, # see how-it-works-detecting. # # `DetectDocumentText` is a synchronous operation. To analyze documents # asynchronously, use StartDocumentTextDetection. # # @option params [required, Types::Document] :document # The input document as base64-encoded bytes or an Amazon S3 object. If # you use the AWS CLI to call Amazon Textract operations, you can't # pass image bytes. The document must be an image in JPG or PNG format. # # @return [Types::DetectDocumentTextResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectDocumentTextResponse#document_metadata #document_metadata} => Types::DocumentMetadata # * {Types::DetectDocumentTextResponse#blocks #blocks} => Array<Types::Block> # # @example Request syntax with placeholder values # # resp = client.detect_document_text({ # document: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # }) # # @example Response structure # # resp.document_metadata.pages #=> Integer # resp.blocks #=> Array # resp.blocks[0].block_type #=> String, one of "KEY_VALUE_SET", "PAGE", "LINE", "WORD", "TABLE", "CELL" # resp.blocks[0].confidence #=> Float # resp.blocks[0].text #=> String # resp.blocks[0].row_index #=> Integer # resp.blocks[0].column_index #=> Integer # resp.blocks[0].row_span #=> Integer # resp.blocks[0].column_span #=> Integer # resp.blocks[0].geometry.bounding_box.width #=> Float # resp.blocks[0].geometry.bounding_box.height #=> Float # resp.blocks[0].geometry.bounding_box.left #=> Float # resp.blocks[0].geometry.bounding_box.top #=> Float # resp.blocks[0].geometry.polygon #=> Array # resp.blocks[0].geometry.polygon[0].x #=> Float # resp.blocks[0].geometry.polygon[0].y #=> Float # resp.blocks[0].id #=> String # resp.blocks[0].relationships #=> Array # resp.blocks[0].relationships[0].type #=> String, one of "VALUE", "CHILD" # resp.blocks[0].relationships[0].ids #=> Array # resp.blocks[0].relationships[0].ids[0] #=> String # resp.blocks[0].entity_types #=> Array # resp.blocks[0].entity_types[0] #=> String, one of "KEY", "VALUE" # resp.blocks[0].page #=> Integer # # @see http://docs.aws.amazon.com/goto/WebAPI/textract-2018-06-27/DetectDocumentText AWS API Documentation # # @overload detect_document_text(params = {}) # @param [Hash] params ({}) def detect_document_text(params = {}, options = {}) req = build_request(:detect_document_text, params) req.send_request(options) end # Gets the results for an Amazon Textract asynchronous operation that # analyzes text in a document image. # # You start asynchronous text analysis by calling StartDocumentAnalysis, # which returns a job identifier (`JobId`). When the text analysis # operation finishes, Amazon Textract publishes a completion status to # the Amazon Simple Notification Service (Amazon SNS) topic that's # registered in the initial call to `StartDocumentAnalysis`. To get the # results of the text-detection operation, first check that the status # value published to the Amazon SNS topic is `SUCCEEDED`. If so, call # `GetDocumentAnalysis`, and pass the job identifier (`JobId`) from the # initial call to `StartDocumentAnalysis`. # # `GetDocumentAnalysis` returns an array of Block objects. For more # information, see how-it-works-analyzing. # # Use the `MaxResults` parameter to limit the number of blocks returned. # If there are more results than specified in `MaxResults`, the value of # `NextToken` in the operation response contains a pagination token for # getting the next set of results. To get the next page of results, call # `GetDocumentAnalysis`, and populate the `NextToken` request parameter # with the token value that's returned from the previous call to # `GetDocumentAnalysis`. # # @option params [required, String] :job_id # A unique identifier for the text-detection job. The `JobId` is # returned from `StartDocumentAnalysis`. # # @option params [Integer] :max_results # The maximum number of results to return per paginated call. The # largest value that you can specify is 1,000. If you specify a value # greater than 1,000, a maximum of 1,000 results is returned. The # default value is 1,000. # # @option params [String] :next_token # If the previous response was incomplete (because there are more blocks # to retrieve), Amazon Textract returns a pagination token in the # response. You can use this pagination token to retrieve the next set # of blocks. # # @return [Types::GetDocumentAnalysisResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetDocumentAnalysisResponse#document_metadata #document_metadata} => Types::DocumentMetadata # * {Types::GetDocumentAnalysisResponse#job_status #job_status} => String # * {Types::GetDocumentAnalysisResponse#next_token #next_token} => String # * {Types::GetDocumentAnalysisResponse#blocks #blocks} => Array<Types::Block> # * {Types::GetDocumentAnalysisResponse#warnings #warnings} => Array<Types::Warning> # * {Types::GetDocumentAnalysisResponse#status_message #status_message} => String # # @example Request syntax with placeholder values # # resp = client.get_document_analysis({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # }) # # @example Response structure # # resp.document_metadata.pages #=> Integer # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED", "PARTIAL_SUCCESS" # resp.next_token #=> String # resp.blocks #=> Array # resp.blocks[0].block_type #=> String, one of "KEY_VALUE_SET", "PAGE", "LINE", "WORD", "TABLE", "CELL" # resp.blocks[0].confidence #=> Float # resp.blocks[0].text #=> String # resp.blocks[0].row_index #=> Integer # resp.blocks[0].column_index #=> Integer # resp.blocks[0].row_span #=> Integer # resp.blocks[0].column_span #=> Integer # resp.blocks[0].geometry.bounding_box.width #=> Float # resp.blocks[0].geometry.bounding_box.height #=> Float # resp.blocks[0].geometry.bounding_box.left #=> Float # resp.blocks[0].geometry.bounding_box.top #=> Float # resp.blocks[0].geometry.polygon #=> Array # resp.blocks[0].geometry.polygon[0].x #=> Float # resp.blocks[0].geometry.polygon[0].y #=> Float # resp.blocks[0].id #=> String # resp.blocks[0].relationships #=> Array # resp.blocks[0].relationships[0].type #=> String, one of "VALUE", "CHILD" # resp.blocks[0].relationships[0].ids #=> Array # resp.blocks[0].relationships[0].ids[0] #=> String # resp.blocks[0].entity_types #=> Array # resp.blocks[0].entity_types[0] #=> String, one of "KEY", "VALUE" # resp.blocks[0].page #=> Integer # resp.warnings #=> Array # resp.warnings[0].error_code #=> String # resp.warnings[0].pages #=> Array # resp.warnings[0].pages[0] #=> Integer # resp.status_message #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/textract-2018-06-27/GetDocumentAnalysis AWS API Documentation # # @overload get_document_analysis(params = {}) # @param [Hash] params ({}) def get_document_analysis(params = {}, options = {}) req = build_request(:get_document_analysis, params) req.send_request(options) end # Gets the results for an Amazon Textract asynchronous operation that # detects text in a document image. Amazon Textract can detect lines of # text and the words that make up a line of text. # # You start asynchronous text detection by calling # StartDocumentTextDetection, which returns a job identifier (`JobId`). # When the text detection operation finishes, Amazon Textract publishes # a completion status to the Amazon Simple Notification Service (Amazon # SNS) topic that's registered in the initial call to # `StartDocumentTextDetection`. To get the results of the text-detection # operation, first check that the status value published to the Amazon # SNS topic is `SUCCEEDED`. If so, call `GetDocumentTextDetection`, and # pass the job identifier (`JobId`) from the initial call to # `StartDocumentTextDetection`. # # `GetDocumentTextDetection` returns an array of Block objects. For more # information, see how-it-works-detecting. # # Use the MaxResults parameter to limit the number of blocks that are # returned. If there are more results than specified in `MaxResults`, # the value of `NextToken` in the operation response contains a # pagination token for getting the next set of results. To get the next # page of results, call `GetDocumentTextDetection`, and populate the # `NextToken` request parameter with the token value that's returned # from the previous call to `GetDocumentTextDetection`. # # For more information, see Document Text Detection in the Amazon # Textract Developer Guide. # # @option params [required, String] :job_id # A unique identifier for the text detection job. The `JobId` is # returned from `StartDocumentTextDetection`. # # @option params [Integer] :max_results # The maximum number of results to return per paginated call. The # largest value you can specify is 1,000. If you specify a value greater # than 1,000, a maximum of 1,000 results is returned. The default value # is 1,000. # # @option params [String] :next_token # If the previous response was incomplete (because there are more blocks # to retrieve), Amazon Textract returns a pagination token in the # response. You can use this pagination token to retrieve the next set # of blocks. # # @return [Types::GetDocumentTextDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetDocumentTextDetectionResponse#document_metadata #document_metadata} => Types::DocumentMetadata # * {Types::GetDocumentTextDetectionResponse#job_status #job_status} => String # * {Types::GetDocumentTextDetectionResponse#next_token #next_token} => String # * {Types::GetDocumentTextDetectionResponse#blocks #blocks} => Array<Types::Block> # * {Types::GetDocumentTextDetectionResponse#warnings #warnings} => Array<Types::Warning> # * {Types::GetDocumentTextDetectionResponse#status_message #status_message} => String # # @example Request syntax with placeholder values # # resp = client.get_document_text_detection({ # job_id: "JobId", # required # max_results: 1, # next_token: "PaginationToken", # }) # # @example Response structure # # resp.document_metadata.pages #=> Integer # resp.job_status #=> String, one of "IN_PROGRESS", "SUCCEEDED", "FAILED", "PARTIAL_SUCCESS" # resp.next_token #=> String # resp.blocks #=> Array # resp.blocks[0].block_type #=> String, one of "KEY_VALUE_SET", "PAGE", "LINE", "WORD", "TABLE", "CELL" # resp.blocks[0].confidence #=> Float # resp.blocks[0].text #=> String # resp.blocks[0].row_index #=> Integer # resp.blocks[0].column_index #=> Integer # resp.blocks[0].row_span #=> Integer # resp.blocks[0].column_span #=> Integer # resp.blocks[0].geometry.bounding_box.width #=> Float # resp.blocks[0].geometry.bounding_box.height #=> Float # resp.blocks[0].geometry.bounding_box.left #=> Float # resp.blocks[0].geometry.bounding_box.top #=> Float # resp.blocks[0].geometry.polygon #=> Array # resp.blocks[0].geometry.polygon[0].x #=> Float # resp.blocks[0].geometry.polygon[0].y #=> Float # resp.blocks[0].id #=> String # resp.blocks[0].relationships #=> Array # resp.blocks[0].relationships[0].type #=> String, one of "VALUE", "CHILD" # resp.blocks[0].relationships[0].ids #=> Array # resp.blocks[0].relationships[0].ids[0] #=> String # resp.blocks[0].entity_types #=> Array # resp.blocks[0].entity_types[0] #=> String, one of "KEY", "VALUE" # resp.blocks[0].page #=> Integer # resp.warnings #=> Array # resp.warnings[0].error_code #=> String # resp.warnings[0].pages #=> Array # resp.warnings[0].pages[0] #=> Integer # resp.status_message #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/textract-2018-06-27/GetDocumentTextDetection AWS API Documentation # # @overload get_document_text_detection(params = {}) # @param [Hash] params ({}) def get_document_text_detection(params = {}, options = {}) req = build_request(:get_document_text_detection, params) req.send_request(options) end # Starts asynchronous analysis of text for relationships in the text and # tables that are detected in a document. Amazon Textract returns for # two types of information: # # * Words and lines that are related to nearby lines and words. The # related information is returned in two Block objects: A KEY Block # object and a VALUE Block object. For example, *Name: Ana Silva # Carolina* contains a key and value. *Name:* is the key. *Ana Silva # Carolina* is the value. # # * Table and table cell data. A TABLE block contains information about # a detected table. A CELL block is returned for each cell in a table. # # Amazon Textract can analyze text in document images and PDF files that # are stored in an Amazon S3 bucket. Use DocumentLocation to specify the # bucket name and file name of the document image. # # `StartDocumentAnalysis` returns a job identifier (`JobId`) that you # use to get the results of the operation. When text analysis is # finished, Amazon Textract publishes a completion status to the Amazon # Simple Notification Service (Amazon SNS) topic that you specify in # `NotificationChannel`. To get the results of the text analysis # operation, first check that the status value published to the Amazon # SNS topic is `SUCCEEDED`. If so, call GetDocumentAnalysis, and pass # the job identifier (`JobId`) from the initial call to # `StartDocumentAnalysis`. # # @option params [required, Types::DocumentLocation] :document_location # The location of the document to be processed. # # @option params [required, Array] :feature_types # A list of the types of analysis to perform. Add TABLES to the list to # return information about the tables that are detected in the input # document. Add FORMS to return detected fields and the associated text. # To perform both types of analysis, add TABLES and FORMS to # `FeatureTypes`. # # @option params [String] :client_request_token # The idempotent token that you use to identify the start request. If # you use the same token with multiple `StartDocumentAnalysis` requests, # the same `JobId` is returned. Use `ClientRequestToken` to prevent the # same job from being accidentally started more than once. # # @option params [String] :job_tag # The unique identifier you specify to identify the job in the # completion status that's published to the Amazon SNS topic. # # @option params [Types::NotificationChannel] :notification_channel # The Amazon SNS topic ARN that you want Amazon Textract to publish the # completion status of the operation to. # # @return [Types::StartDocumentAnalysisResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartDocumentAnalysisResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_document_analysis({ # document_location: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # feature_types: ["TABLES"], # required, accepts TABLES, FORMS # client_request_token: "ClientRequestToken", # job_tag: "JobTag", # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # }) # # @example Response structure # # resp.job_id #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/textract-2018-06-27/StartDocumentAnalysis AWS API Documentation # # @overload start_document_analysis(params = {}) # @param [Hash] params ({}) def start_document_analysis(params = {}, options = {}) req = build_request(:start_document_analysis, params) req.send_request(options) end # Starts the asynchronous detection of text in a document. Amazon # Textract can detect lines of text and the words that make up a line of # text. # # Amazon Textract can detect text in document images and PDF files that # are stored in an Amazon S3 bucket. Use DocumentLocation to specify the # bucket name and the file name of the document image. # # `StartTextDetection` returns a job identifier (`JobId`) that you use # to get the results of the operation. When text detection is finished, # Amazon Textract publishes a completion status to the Amazon Simple # Notification Service (Amazon SNS) topic that you specify in # `NotificationChannel`. To get the results of the text detection # operation, first check that the status value published to the Amazon # SNS topic is `SUCCEEDED`. If so, call GetDocumentTextDetection, and # pass the job identifier (`JobId`) from the initial call to # `StartDocumentTextDetection`. # # For more information, see Document Text Detection in the Amazon # Textract Developer Guide. # # @option params [required, Types::DocumentLocation] :document_location # The location of the document to be processed. # # @option params [String] :client_request_token # The idempotent token that's used to identify the start request. If # you use the same token with multiple `StartDocumentTextDetection` # requests, the same `JobId` is returned. Use `ClientRequestToken` to # prevent the same job from being accidentally started more than once. # # @option params [String] :job_tag # A unique identifier you specify to identify the job in the completion # status that's published to the Amazon Simple Notification Service # (Amazon SNS) topic. # # @option params [Types::NotificationChannel] :notification_channel # The Amazon SNS topic ARN that you want Amazon Textract to publish the # completion status of the operation to. # # @return [Types::StartDocumentTextDetectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::StartDocumentTextDetectionResponse#job_id #job_id} => String # # @example Request syntax with placeholder values # # resp = client.start_document_text_detection({ # document_location: { # required # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # client_request_token: "ClientRequestToken", # job_tag: "JobTag", # notification_channel: { # sns_topic_arn: "SNSTopicArn", # required # role_arn: "RoleArn", # required # }, # }) # # @example Response structure # # resp.job_id #=> String # # @see http://docs.aws.amazon.com/goto/WebAPI/textract-2018-06-27/StartDocumentTextDetection AWS API Documentation # # @overload start_document_text_detection(params = {}) # @param [Hash] params ({}) def start_document_text_detection(params = {}, options = {}) req = build_request(:start_document_text_detection, params) req.send_request(options) end # @!endgroup # @param params ({}) # @api private def build_request(operation_name, params = {}) handlers = @handlers.for(operation_name) context = Seahorse::Client::RequestContext.new( operation_name: operation_name, operation: config.api.operation(operation_name), client: self, params: params, config: config) context[:gem_name] = 'aws-sdk-textract' context[:gem_version] = '1.2.0' Seahorse::Client::Request.new(handlers, context) end # @api private # @deprecated def waiter_names [] end class << self # @api private attr_reader :identifier # @api private def errors_module Errors end end end end