(__TEXTpp__text__TEXT2__stubs__TEXT:O:O__stub_helper__TEXTOO__const__TEXTP@P__cstring__TEXTR4R__unwind_info__TEXT$n$n(__DATApp__nl_symbol_ptr__DATApp__got__DATApp__la_symbol_ptr__DATApp__data__DATApp__bss__DATAPq(__common__DATAxqH__LINKEDIT0L+ 0@rpath/libosqp.dylib"0p0 hX P8/c}9L\+W$ * 8/usr/lib/libSystem.B.dylib&0()XUHAWAVSHXHHH{XL0LxL)f)EH{PL)f)EH{@L)f)EH{`Lw)f)EHHx Lc)f)EH{pLR)f(M_f)MH{hL8)f(MfMf(Uff_fX i3f(f(MfMf^Hf(X3^WQY_r3]r3HX[A^A_]UHSPHHHP(f(Yf.w^f.w1HqHHAxH[]ffff.UHLA2f.2f(f(fTfUfVf(fTfUfVf(wf(f.vf(AHHy1LOLW HA(HQ0 c2f."vf.%Y2vH(H,2.\>2f.H(vHY-2HA2f(^A"Hy1%1-1f4f.HHOHư>HHO H.AHI~\ 0f.Hw(HvQHHHOH Y 0 0^HO I~}T]Ht=HHOHHH N0^ HO  I~}1I~ /Iư>I.A//%/A,f.A4v.f.v(H<HHOLHO L\f.HvBHtqHHOH+Y,f(^HO 49fHt0HHOHHHf(^+HG ,йHI;V.HuHGHwHH H[A^]1[A^]fff.UHHHHH]fffff.UHSPHHH{0H0W'HH{@HpW'HH{8HpWH[]y'fUHAWAVAUATSLMMdHLYLHLgPAAY$Mh A\EAI-AMOIIs IWIIOI4H I\$H]M4I]H]I\H9EI9EL9H9uAH9H9u@ƺ]ׄ]D u}@ uxMIIVAI\$IuIOLfKffYfYf^f\ff\fIfH H H HuM9t.fffff.AAYA\DAHL9|MxM~LGXLW L_8HwHIsE1HwH_J KHKKO4H9AI9AH9I9L9I9E1Eu} uy uuMII@IZISJLMf@ffSffbfYf\ffYf\fAf H H H H IuM9IGALt&CC CY \K LHL9tdI)INLILITI\1fDLYL\AD Y \AHI9uHHG[A\A]A^A_]ffff.UHAWAVATSHL0MHL@`L_0LOHLWPIs1K4HaK KL9AI9I9I9AI9I9@1AD @ u|LHAf( >*f\IIIRI[Hff.fQffYfYfbf*fYfXfYfXfcf+H H H HuI9tA6*fffff.Af(\AY AYXAHL9|MLO0HWPHI1INH)LHt)Hfffff.A\HHuHzI)HDHLITfff.B\A@B\A@B\A@\H H H Iu J4K JHef.LIHH~rHSxIp(Ix0*fWf(_Y]Y.XXHt@f.f(_Y]YXXHH9|fWYf( fWf.vxf)EIxHsxH1E1+HHxt*Hu HHx HHHHC HHH01f(Mf.1H[A^]fW]H]UHSH(EHHHxt Ht+HHH05Mf.7HHxHHHMHf.HHHHx f)Ef)Uf(UYUYUf( fWf.uf)UHHHxH1/(HHHxHA)HHxt*Hu HHx HHHHHHH0f(Mf.HHHxH1'HHxt+Hu!HHx(HHHHH,H LAM~nf(eYef(fWHq01 ,1ff. vHf.w.HQ(f.vHf.wHL9|¸1H([]fUHHO(HAH s r 1H]1]DUHSPHHH@(HH  HHHH9H0bHHHyHp`CHH@(HtHu;HH{xHp\HH{x ^Hpf(HH@(HtHu4HHH0HH ^H0f(HH{0H0fWHH{@HpfWHH{8HpfWH[]pHH{0HH1HgHH{8HHqHPLHHxtHH[]lH[]fUHAWAVAUATSH(HHtUHCLLp8L@@HHHHML`PLxXH@`HEIhHuTHHxHLLWLs0HC8HELC@HH0L`8Lx@HHHHMLhXHtL}MHHxL-EHHHx LBXEHHxt HY@A$ML}HHxSfWHULeAHLA$HzrAEHǃH([A\A]A^A_]f.UHSPHHCXHChHC(H{H5kHCxH[]UHHw(H Hw!HHc HHH5[]mk]HH5]ZkHH5$]IkHH5|]8kHH5]'kHH5]kHH5']kHH5]jHH5]jHH5]jHH5]jBSSUfwSS@UHAWAVATSH IHHG@f.GwGHf.8v?HG(HH5}.jHHAHH8H [A\A^A_]Hf@@fHPMtf(yfYfYf)MHHxt-f(Hf)EHf.@@vE1AE1AHf(E}IE1f(Ef(HSHf.GHv+Mt[MHG(HH5?i!(EHMt(MHtMHG(HH5K1MuHMHHG(HH5HG(HH5shHHxt(HuHHxHHsxHHHHHꌠ9Y>)FLHG(HH5Qh311HG(HH5#-hHHxt*Hu HHxHHHHHHꌠ9Y>)ffffff.UHAVSHHHSHL[MLMLKML9R3L;RPLBI1ItH9}%HB ffffff.H9<>HH9|HL9H|M9K?M9S5MRHK(HS01E1BfB.:IM9|H=H5G1%H=GdH=H5)1H=6FH=H5 13SH=51#H=cH51H=1 [A^]H=,H513H= 1xH=H51aH=H=H5e1CH=H=H5G1%sH=71kH=H51HC(HK0BB H=Dfffff.UH1H]ÐUHHt_HxvHH Wf.G0f.G(H=H51TH=GH=H513H=vH=H5b1H=xXH=H5D1H=v:H=}H5&1H={H=_H51H=1 ]Hx]Wf.suf.GWf.GpH8G@Wf.H=H51>H=H=H5m1 H=7`H=H5L1H=?H=H5+1H=!H=aH5 1H=4H=@H51H=OHf.v!H=H51pH=Wf.u+z)f.u#z!H=H51<H=|f.WPWf.GXO`f.f. hHHH HWf..H=6H51 H= H=H51l H=TH=H51K H=QH=H5w1* H=NjH=H5V1 H=TIH=H551 H=P(H=kH51 H=MH=JH51 H=UH=)H51 H=Z1]ÐUHSPCH -HH=1L H[]ÐHHE1LIM)HHt(HB YBX B IHuIL)JDJTJtfDJYXNHJYXNHJYXNH YXH H H HuUHSHLL I9AH9I9AH9AE1A[] E III@HDHAHMQI)1ff\f$flfYfXfYfXf$flfT f\0fd fl0fYfXfYfXfd fl0HIuMt1ff\f$flfYfXfYfXf$flI9(1MuUHH~ЃHufW1HW]H)fW1f(2 fWfffff.dYf(f(fUfWfTfV_Ydf(f(fUfWfTfV_HH9uHt; Y f( fWfWf(f(fUfTfV_f(]ffff.UHH~HufW1Hu|W]H)fW1f(6 fWfdf(f(fUfWfTfV_f(f(fUfWfTfV_HH9uHt6 f( fWfWf(f(fUfTfV_f(]ffff.UHH~ЃHufW1HW]H)fW1f(R fWfffff.d\f(f(fUfWfTfV_\df(f(fUfWfTfV_HH9uHt; \ f(fWfWf(f(fUfTfV_f(]ffff.UHH~HNHsfW1HuZxfWrHH)fW1fXXDXDXDXD XD(XD0XD8HH9uHt H Hfff.XHHuH*^]UHHHsE1IIfHnfpDIHHHDHAHs1MIIH)1fDD D0D@DPD`DpǀǐǠǰH H{Mt(HDIfffff.@H IuI9tJL)fH0HHu]fUHH HsE1III@HHJHs1HHAH)1f.f fLfL fL0fL@fLPfL`fLpf׀fאfנfװffffH H{Ht(HDHfffff.fHfH HuI9tJL)fHHu]ÐUHHHs1HHHPHDBAHIHH)1fff\fd fl0fXfXff\fXfXfd fl0HHuMtff\fXfXff\H9t%H H)f X HHu]1MuUHHHs1HHHPHDBAHIHH)1fff\fd fl0fYfYff\fYfYfd fl0HHuMtff\fYfYff\H9t%H H)f Y HHu]1MuUHAWAVATSIIN4L7HHtM~HLL"1H[A\A^A_]@UHHHrHH9HH9E1҉D)LBM)HtHff.JJIHuI<L)JL8JD8fHpHqHpHqHpHqHpHqHpHqHpHqHpHqH0H1H@H@HuIIMJLHDAAI s 1MuuMHI)1f.LLD L0D L0D@LPD@LPD`LpD`LpHIuMt0LLHLIfDA AAA I H IuI9]UHHHrHH9HH9E1҉D)LBM)HtHff.JJIHuI<L)JL8JD8fHpHqHpHqHpHqHpHqHpHqHpHqHpHqH0H1H@H@HuIIMJLHDAAI s 1MuuMHI)1f.LLD L0D L0D@LPD@LPD`LpD`LpHIuMt0LLHLIfDA AAA I H IuI9]UHH'HtHH9HH9E1HBLtB^BLHL9H)HDHLff.f(^HIf(^ HHHuIIIIHDAAHtnI@H)1f(f f(f^ffLf(f^fTHHuMtff( f^f I9]1MuUHH~HJЃHsfW1HuiW]H)fW1f. TY XYTXLYLXDYDXHH9uHt-HH Hf Y XHHHu]DHHE1LAM)HHt$HBBYBIHuIrL)JDJTJtf.FYB@FYB@FYB@YH H H HuUHSHLL I9AH9I9AH9AE1A[]E IIIAHD@AHMPI)1@ffLffYfDfYffDfD fL0fT fYfD0fYfT fD0HIuMt)ffLffYfDfYffDI9P1MuUHHHNHs 1Hu\}H)1LQWQDDQDDQDHH9uHt&H Hf.QHHu]fUHHHs1HHHPHDBAHIHH)1fff\fd fl0f_f_ff\f_f_fd fl0HHuMtff\f_f_ff\H9t%H H)f _ HHu]1MuUHHHs1HHHPHDBAHIHH)1fff\fd fl0f]f]ff\f]f]fd fl0HHuMtff\f]f]ff\H9t%H H)f ] HHu]1MuHUHSAAHuE1\L)1E1LLf.MGIHLTDHDf.DIGHHDIHL9uM[]tJBJ fB.HGHJffff.HUHSAAHuE1\L)1E1LLf.MGIHLTHDDf.DIGHHDIHL9uM[]tJJ BfB.HGHJffff.UHHGHOHHHO(Hs1HHHzHDGAHIpH)1fff\fd fl0fYfYff\fYfYfd fl0HHuMtff\fYfYff\H9t%H H)f Y HHu]1MuUHAWAVSLGMLOME1LO\II9L HO(D)MsI)Ht-Hffffff.IYHHuIrmffffff.IYIDYDDIDYDDIDYDDHL9|M9)[A^A_]fUHAWAVAUATSLGMFLOM)E1LE1MfDLLLQMlMI)LHG(IHLHH9v J I9MII^HD{AHtAHL0MGI)1ffLfTf\f$fYfYfLfTfYfYf\f$HIuMt&HAf fTfYfYf fTM9LEtLAYHL9|M9[A\A]A^A_]DUHAWAVAUATSPIHIIMuIwH~ HHMOMGK<IMtM(E1LMLWMlM9IG IO(DD)Me@LtBAYJ4XIsM9tGf.AYHXDAYHTXHL9|M9ZMM(E1fDLMLWMlM9IO IG(DD)Me@Lt"BAYJ4 \ IsM9tKfDAYH \ DAYHT \ HL9|M9RH[A\A]A^A_]UHAWAVAUATSPMIIIMH}uHwH~HLH}HwLGI<IMHM E1ffffff.LMLHMdM9Lo DD)M\$Lt2KTfWH9tHMHI(BAYAXAIRM9H}tbfDILfWH9fWtH_( AY AX A ILH9tH_(DAYAXAHL9|I9+MHM E1fffff.LMLKMdM9Lo DD)M\$Lt6KTfWH9tHEHH(BAYA \A IRM9H}tffILfWH9fWtHG( AY A\AILH9tHG(DAYA \A HL9|I9#HME1ffffff.LMLJMTM9HEHx HH(ADD)MbuLM9u@{fffff.B JAY XAICM9tJffff. HAY XA DH\AYXAHL9|I9:HME1fDLMLJMTM9HELh HH(ADD)MbuLM9u@|fffff.B KDAY \AICM9tJfff. I|AY \ALI|AY \AHL9|I99H[A\A]A^A_]f.UHAWAVSPHIM~MJ4HMFIE1f(afWf(UDLHLNILH9I~()LQuHI9uKfD$f(f(fUfWfTfV_,HBf(I9th$f(f(fUfWfTfV_,df(f(fUfWfTfV_HH9|M9H[A^A_]fff.UHAVSHIIvH~ HHMFMMNIE1f(fWf(HKTIH9I~ IF()LZHt4H f(f(fUfWfTfV_$$HNI9tvff.H4f(f(fUfWfTfV_$$Ht\f(f(fUfWfTfV_$$HH9|M9[A^]UHAWAVSPHIM~MJ4HMMFI1f(fWfffff.LJI|H9}]MV Iv(f.If(f(fUfWfTfVf(_H9t _HH9|M9HLuH[A^A_]ffffff.UHSPLOMLGIfW1 M\L9}WLW fIH9u'HG(YYY ff.},H_(YYXHL9|HL9L|1H=H51MH=1? ;fWH[]ÐUH((GHG (G(HG8(G@(GPH?HG`GhHư>HGpHGx(fHnfsHLJHLJ]fffff.UHAWAVAUATSH8IIHLHtH5MLpHtH5/IML3IHHB8IHAEI}]IHAIuI} IHA HHAHI}]IHAHrIuI}(IHA(IuI}0IHA0I]HtH8HA(H+L$LHEIFLIMIF tHH}LwIF(Mt HI]HTHEIF0L?HEIF@J<#)HEIFHHHI^PLHEIFXLIF8H}CH}8H/MtH}HH} L誸MeLHEIF`I]HrHEIFhH]HEIFpLHHEIFxH3HEIHHEIHHILeLIH}=H}2H}'H}HH}tH}HH}L,?IHI0HIHM}ILlHEHCL\HEHC IEHEL$L<HEHCLeL(HC(H}JH}?H}tH}-H$LHILIMH}IHMH}t HL.,IdžIdžIdžIdžLIxhhHtH5wLHIINHpHPI@D@hE1hHtH56hIMfMIEHEL<LHEID$(LHEID$0LHEID$LHEID$ I]HH{IMl$8LkHEID$@LZID$HM}H}t@H}kH}`H}UH}JH}?H6IMMHHI$LID$HHu H}_IHHHIH@pH@hH@`H@XI{<I@PIdžIdžIdžH@xIHHHtL#6Idž1H8[A\A]A^A_]H5`H8[A\A]A^A_]XUHAWAVAUATSHXIMIuIH@`IdžIIHHEa;IHt+5&fIHQHx8`IF0HEIFPHEIF@HEIFXHEE11Luffff.H}Hu胲H}HuvL޲LL>L覻!fMgIIHH`HPIHDE:If. u{UXf.HHt[LHHHHtOLH ףp= ףHLHH?HHHiMI9M@@1HuM1AAAuE1H}ALHUD@t H}6DHt1H}DHRLuLuMI}tI} t~I}3IM H&HEHHHuEu1LHuHULHMuIM;}8ffff.uI8MIAM0YHPf.vvIHHEWH*HMtWH*f(Y2XEXf(E )M\H,HMH9HLIM uI}fffff.IM;}8#IMHH5HX[A\A]A^A_]pL蘯IHx8AHEHuI1LLHUIHtIuL41LH}u)IHtIv0L"I@8IHtIIHx(L8HIHIHx(IHH=\IHIHKH=1H@HLs3IHx(,IHx(u%LVHuIHLII 6IGXIHxxtH(uLSIGXHG`HOPIHDXXGhGpt IdžfHnAIHt Hpx3L"1`HHX[A\A]A^A_]1HMLuHH=H51H=1 UHAVSHHH;HtiHGHt H@H;HGHt H?H;HG Ht HbH;HG(Ht HNH;HG0Ht H:H;2HHteHGHtHHHG HtHHHGHtHHHG(HtHHHHtHHtHHtH{Ht HGHtHHxh,^IH{HHG(Ht HAH{HG0Ht H,H{HGHt HH{HG Ht HH{HG8Ht HH{HG@Ht HH{HGHHt HH{H{Hu#&E1E1H{HEH{HtH{ Ht{H{(HtmH{0Ht_H{@HtQH{HHtCH{PHt5H{XHt'H{8HtH{`Ht H{hHtH{pHtH{xHtHHtHHtHHtHHtHHtHHt4HHtHpHHGHtHXHLHHt;HHt*H"L[A^]@UHAVSIHHHuHǃHH@`H0HHHp LxHHxt7HHHyHHp HHHH0Hx CHgH0HX@`@`1[A^]H5"[A^]fffff.UHAWAVSPIHIMIuIdžIH@`I0IHPH~!1fDfA.HH9|Hp(H[IHPHp0LHIHxtH]H~LHH@H@(HSكH1H/MHUH@LHH@H@(HrI H9H L91ɉ)HH)HtHfDIH=10 ,]ffffff.HtAWf.vIUHH=H51H=d1۽ ׽]H5IH@@1f.HtAWf.vIUHH=H5^1yH=1k g]H51ٰH@H1f.HtAWf.vIUHH=H51 H=1 ]H5iH@P1f.HtAWf.vIUHH==H51虼H=1苼 臼]H5H@X1f.Ht"Wf.s*f.s H@`1H5騯UHH=H5x1H=|1 ]Ht>HrIUHH=`H5e1輻H=n1讻 誻]H58HH1ff.Ht>HrIUHH=H5/1LH=@1> :]H5鬮HH1ff.HtHx"HH1H5dUHH=_H51軺H=1譺 詺]fff.HtWf.s H@p1H5UHH=H51IH=1; 7]f.Ht>HrIUHH=H51H=1 ]H5k\HHpxHH@h1ffffff.HtHx"HH1H5EUHH=H5)1[H=r1M I]fff.Ht>HrIUHH=H51 H=1 ]H5lHH1ff.Ht Wf.v(UHH=许]H5H1ÐUHHLHMLP(LX0EAIu1MM)11 >D>fA. :w I : H >I;A ;f. HGHH>fA.D:w IL:HL>ID;AD;f.HGHHD>HHI9uMt0HI fA.HGIAf.HGHH]ff.UHHL@M~MHOXHx(H@0@X_] \ HHHHHIu]ÐUHHHs1JHHHHHDAAHIPH)1fD(ĸf(ܷf(%@f,ftf| fT0f(fAf(fAf8f(f8f(f]f(f]ffLf(fAf(fAf8f(f8f(f]f(f]fD fL0HH`MtZff\f(%f(ff(ff(%f8f(f8f(f(f]f]f fDH9t^H H)% ݷffff.f(f(fTfUfVf(]HHu]1M6ffffff.UHAWAVAUATSPMMIHIH+LLHLHL菼LLH[A\A]A^A_]fDUHAWAVAUATSHhII$I$HLpH?HHyHI$I$Hy H0I$I$HyHpԵǮI$I$Hy(Hp覮I$HxHCHHIVHrHHH}LHH}HMHHEH)HMHuHFHUH)HE1Lxa1f(=f(5fD(ֵH}1f(=|f(5fD(H}Gff.HpI$II$HxLhM$I$HEH6LLHLHLLxH萺LHuHI$5YfD(=<fD(5fD(Hs1:ffffff.H}HM1f(=wf(5fD(fDff\fd fl0f(ff(ff8f(f8fA(f]fA(f]ffLf(ff(ff8f(f8fA(f]fA(f]fD fL0HH`H}tHff\f(ff(ff8f(f8fA(f]fA(f]ffLHEH9HtJHH)H ff.f(Af(fATfUfVfA(]HHuMI$Is18ffff.H}_HU1f(=ײf(5fD(fDff\fd fl0f(ff(ff8f(f8fA(f]fA(f]ffLf(ff(ff8f(f8fA(f]fA(f]fD fL0HH`H}tHff\f(ff(ff8f(f8fA(f]fA(f]ffLHMI9HtJLH)Hff.f(Af(fATfUfVfA(]HHuH胴I$LsI$HH萰I$HL}I$I$Hx(I$I$HxI$I$HxI$I$HxI$I$Hp HHI$I$HxHHI$I$HxHLбI$I$HxI$H f)EI$Hx Hf(%¯f(fUfTfVuf(]f(M_f(f(f(fUfTfVf(]f(^f)EI$HxնI$Hx f(EH`f(MI$YHpHI$H;Q? I$^@HxHp I$H蜮I$I$HyHq(HPI$I$HyHHHp(H_I$I$HyHHHp0H?1Hh[A\A]A^A_]fffff.UHSPHHHHxA迵HHHxHq 訶HHHxHq 葷HHH0Hx AHHHy HHp H虯HHHxHq(BHHHxHq +HHHy(HHHp(HMHHHy(HHHp0H/1H[]fDUHSPHHHHyHH1HHHHHyHHqHHHϮHHxHHAHp 1H[]ÐUHHչ]UHfff.HHDŽu]ffffff.UHH=1H=1H=1 ]UHAWAVAUATSHXIH5HHEIMHCHKHPH@HqHID$D$()E)E)E)EfE-L}LwH=&H5ݸ1V()E)E)E)EfE-L=H=1#3SH=1H=1DH=1AEhH VH4H=1ԩIFHp(HtH=1踩H=1誩AE@AMHH=萩AEPAMXH=vAEH=bI}tH=1MH=11?AEAM`H=%Au8H=1IHtH=1 H=0AWf.u{H=ɨI}t H=H=1諨ItH=:表ItH=H=肨IuH=1^I}xt H=H=1@AWf.u{H= H=HyHH;Eu HX[A\A]A^A_]胧UHAWAVSPII3H=H1輧C8H=9詧C@L5.L蓧CHL脧ILoItCPC`XCXH=F BILJH[A^A_]fDUHAWAVSPIIH=H51C8H=tC@L5iLΦCHL迦H=c1豦ItCPC`XCXXChH=#胦 H[A^A_]uffffff.UHAVSIH OHsH=17Mt+H{(u$HC0Hu H= Hy H≠3H=Ϸ1HC(HHwC8H=ɷץCpH=ҷĥH=ٷ讥 [A^]馥UHSPHuHtpC@C @ C0@0C@@@CP@PHK`HH`KhHhCp@p1H[]ffffff.UHSPHΤHH[]UHAVSI譤HI^I+I~蠤AFANH1HHfHnfb f\f|^[A^]ÐUHAWAVAUATSHHLMLHMEIIH~HFI}IMIUHuHvHHHƹAHO HHELeMtI}HI$HEHI}H]L}M]M11LmMLufHILI9u%IF HIFHIF( HMILHBI9HE-HMM MU(MnMf IF(K I ITKMIL~IH9}M;DuITITLHIILI9L|ILmHEI;EILLuqH]HtH;HEH0H'HHUHZHLbH}I4$1LMLe@HGILH9HENMVMMf MM^(HLr IHZ(HEML,1I MMAMIHHIHuI HsMI4$E1MGK|H9}kOLffff.ILHVIM%I6HIF fWvfAHtrALOIIr/IWHHOHfffff.HMH;MtHIHE@HHH;HILXLMHI{KDH@KL1H}HELIfDI4HHH~dHHH KtH] HKuzINHtsH=^ff.JuzINHtUH=^Hf.KuzINHt7H=^*INf.8JuzHtH=w^ Ht H=z^1fWEf.INrHtH=`^EfWINAGf.rHtH=v^INAGfWf.rHtH=^fWINAG f.rHtH=^INAG(fWf.rHtH=^fWINAG0f.rHtH=^INAG8fWf.rHtH=^fWINAG@f.rHtH=_INH]f(UXfWHfTfUfVfWfTfUfVf)EH=^1fWEf.INrHtH=_EfWIN(Ef.rHtH=_(EINfWEf.rHtH=_EfWINEf.rHtH=`EINfWEf.rHtH=`EfWINAGhf.rHtH=/`INWMf.Mf.WMf.r}Mf.rrHtmE}XUf(XXX5HY-HYXef(XXYXH=_H8[A^A_]H8[A^A_]ÐUHAWAVAUATSHHMLIHIIMt@H5GLL}MMIELMML}I*AGIMxgMtbHt]MtXMtnLuH]MO4tWI*AGMx/HI9wLI9wGLLLHEHbHu>HMtHI1HH[A\A]A^A_]HMHELHþLHHHHEWI*XEH}HMI}H}rHþLbIHHEH)M HEWH*MXMIOWH*XMHLLHULeLMH]IuHLHHHH3H1HE1HULLHULEMHHHHHsH}kN4*I9K .L9N4)I9K .L9vmN4)I9vpK .L9vaN4)I9u^H}LzHrH}iH}`MHHI΄uEI΄:HHI9$L MIMH]MfInfb^Df\fDf|MXY DAO8LLHUHMLeMH]IAWuAVARH H}H}{HsLkLcHEWH*ALLHUHML}MH]IjuAVARsH H}H} HL L HEUHAWAVSI9MQE1L4IuqKHCH HCH HC HC(8Z0ILk0MeMeIE0N<L30HC8L'0HL0HC@L 0HCHL0HCPJ<H}/HEHCXL/HL/HJ</IEK<IE(IE /HL/HL}/HH}tAML}Huf(EHM:I,MNIAL}IGHMHHBHELYE1MLMt$N|I9D)MoIt#CYHA \A LPI9thMM)HEJKfff.@CYLSC \C CYLC \C HHIuI9=HHrIL9IL9E1HGL)HHt+Hfffff.CCYCIHuHDIM)KDK\fff.CY@@CY@@CY@@YH H IuIIIFHDPAH+MZI)1ff.fAfALfAfYfADfYfAL fA\0fAfADfAD fYfAL0fYfAD fAL0HIuMt/fAfALfAfYfADfYfAfADI9wH~_Lffffff.LLDI9}5LADLD HAY \ADHL9|HH[A\A]A^A_]1MNxUHAWAVATSHH]LHǃHHHHHLHLLLLLAVPPATAWASARs8s@PHPHt0H=H5401A6H=>01 H{0Ht6yH{8HtH{@HtH{HHtH{PHtH{XHtvHHteHHtTHHtCHHt2H[A\A^A_]"[A\A^A_]UHAWAVAUATSHhMHM)EIIHIH]L+L}MM}pLuMvMuxK >If(EAE`MehH IEHIEH IEHxIE AEHMHHpIEHHdIEPHXHI]XLeMt=Mf(EHuH}IMNIpAHEH@JfHHHzHDGAHnIpH)1fvfff.o oTffA AToL oT0ffAL AT0HHuMt$ooLfvffAALH9IHMMfIVHMIL HrJtH9JtH91AyI)Ht#Hffff.HHHHHuIH)HDHTfDHrHHpHrHHpHrHHpH2HH0H H HuHHH^HDCAHIxH)1fvfDo oTff ToL oT0ffL T0HHuMt"ooLfvffLH91H}ÿt IHEIHE(AIHEIHE(AIHEIHEIHEMIIDžIDžIDžIDžWAAAAIDžIDžAAAAAAAAAAAAAAA A A0A0A@A@APAPA`A`ApApAAAAAAAAAAAAAAAAAAAAA A A0A0A@A@APAPA`A`ApApf(E fAIIDžIDž IDž1IE(IDž IE0MIMLxLHuHUHMMLeMuAWAWuuuSAu8Au@p(HPIt%H=H5%1AAH=%zIDžIE0HxHuHUHMMMuAWAWuuuSAu8Au@p(hHPIt[H=iH5*%1AH=t%1 LHEHHh[A\A]A^A_]11M%61M1M]zff.UHAWAVAUATSPIHLHǃ!HHHHLLS0LLLHLAWsPAVPAUATASs8s@Ar(6HPHt:H=7H5$1A7H=$1 ~H{ht1}LKpM#HKPIs1JL9vKH9s1LHHBHHwH s 1Hu}HFH)1fDLAALD L0AD AL0D@LPAD@ALPfD`fLpfAD`fALpHHuHt6IDH|Hf.fGff@fH H HuI9tfff.HIHL9|HKxHLCPLSXHsA1KK41fAYXHH9|H[A\A]A^A_]KJ I4I.A52T52TE-C6?@@?Aꌠ9Y>)F@??ư> @?MbP?MbP?-C6?-C6?)@9@@@@----------------0C0E0C0EeA$@@$@?"@ @& .>solvedsolved inaccurateprimal infeasibleprimal infeasible inaccurateunsolveddual infeasibledual infeasible inaccuratemaximum iterations reachedinterruptedproblem non convexvalidate_dataMissing dataMissing matrix PMissing matrix An must be positive and m nonnegative; n = %i, m = %iP does not have dimension n x n with n = %iP is not squareP is not upper triangularA does not have dimension %i x %iLower bound at index %d is greater than upper bound: %.4e > %.4evalidate_settingsMissing settings!scaling must be nonnegativeadaptive_rho must be either 0 or 1adaptive_rho_interval must be nonnegativeadaptive_rho_fraction must be positiveadaptive_rho_tolerance must be >= 1polish_refine_iter must be nonnegativesigma must be positivemax_iter must be positiveeps_abs must be nonnegativeeps_rel must be nonnegativeat least one of eps_abs and eps_rel must be positiveeps_prim_inf must be positiveeps_dual_inf must be positivealpha must be strictly between 0 and 2linsys_solver not recognizedverbose must be either 0 or 1scaled_termination must be either 0 or 1check_termination must be nonnegativewarm_start must be either 0 or 1time_limit must be nonnegativeProblem data validation.Solver settings validation.Linear system solver not available. Tried to obtain it from shared library.Linear system solver initialization.KKT matrix factorization. The problem seems to be non-convex.Memory allocation.Solver workspace not initialized.ERROR in %s: %s quad_formquad_form matrix is not upper triangularosqp_setuposqp_solveERROR in %s: Failed rho updateosqp_update_lin_costosqp_update_boundslower bound must be lower than or equal to upper boundosqp_update_lower_boundupper bound must be greater than or equal to lower boundosqp_update_upper_boundosqp_warm_startosqp_warm_start_xosqp_warm_start_yosqp_update_Pnew number of elements (%i) greater than elements in P (%i)new KKT matrix is not quasidefiniteosqp_update_Anew number of elements (%i) greater than elements in A (%i)osqp_update_P_Aosqp_update_rhorho must be positiveosqp_update_max_iterosqp_update_eps_absosqp_update_eps_relosqp_update_eps_prim_infeps_prim_inf must be nonnegativeosqp_update_eps_dual_infeps_dual_inf must be nonnegativeosqp_update_alphaalpha must be between 0 and 2osqp_update_warm_startwarm_start should be either 0 or 1osqp_update_scaled_terminationscaled_termination should be either 0 or 1osqp_update_check_terminationcheck_termination should be nonnegativeosqp_update_deltadelta must be positiveosqp_update_polishpolish should be either 0 or 1osqp_update_polish_refine_iterosqp_update_verboseverbose should be either 0 or 1osqp_update_time_limitrun time limit reachedSolver interrupted0.6.0iter objective pri res dua res rho time OSQP v%s - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2019 problem: variables n = %i, constraints m = %i nnz(P) + nnz(A) = %i settings: linear system solver = %s (%d threads), eps_abs = %.1e, eps_rel = %.1e, eps_prim_inf = %.1e, eps_dual_inf = %.1e, rho = %.2e (adaptive)sigma = %.2e, alpha = %.2f, max_iter = %i check_termination: on (interval %i), time_limit: %.2e sec, scaling: on, scaling: off, warm start: on, warm start: off, polish: on, polish: off, time_limit: %.2e sec %4i %12.4e %9.2e %9.2es%4splsh --------status: %s number of iterations: %i optimal objective: %.4f run time: %.2es optimal rho estimate: %.2e check_termination: off,scaled_termination: offtime_limit: offscaled_termination: onsolution polish: unsuccessfulsolution polish: successfulcsc_to_triuMatrix M not squareUpper triangular matrix extraction failed (out of memory)iterative_refinementqdldlmkl pardisolh_load_libno library name givenError while loading dynamic library %s: %slh_load_symCannot find symbol %s in dynamic library, error = %s AMD version %d.%d.%d, %s: approximate minimum degree ordering dense row parameter: %g May 4, 2016 no rows treated as dense (rows with more than max (%g * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes aggressive absorption: no size of AMD integer: %d AMD version %d.%d.%d, %s, results: status: OK out of memory invalid matrix OK, but jumbled unknown n, dimension of A: %.20g nz, number of nonzeros in A: %.20g symmetry of A: %.4f number of nonzeros on diagonal: %.20g nonzeros in pattern of A+A' (excl. diagonal): %.20g # dense rows/columns of A+A': %.20g memory used, in bytes: %.20g # of memory compactions: %.20g The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): %.20g nonzeros in L (including diagonal): %.20g # divide operations for LDL' or LU: %.20g # multiply-subtract operations for LDL': %.20g # multiply-subtract operations for LU: %.20g max nz. in any column of L (incl. diagonal): %.20g chol flop count for real A, sqrt counted as 1 flop: %.20g LDL' flop count for real A: %.20g LDL' flop count for complex A: %.20g LU flop count for real A (with no pivoting): %.20g LU flop count for complex A (with no pivoting): %.20g init_linsys_solver_qdldlError forming and permuting KKT matrixLDL_factorError in KKT matrix LDL factorization when computing the elimination tree. A is not perfectly upper triangularError in KKT matrix LDL factorization when computing the nonzero elements. There are zeros in the diagonal matrixError in KKT matrix LDL factorization when computing the nonzero elements. The problem seems to be non-convexfree_linsys_solver_pardisoError during MKL Pardiso cleanup: %dinit_linsys_solver_pardisoError in forming KKT matrixError during symbolic factorization: %dError during numerical factorization: %dsolve_linsys_pardisoError during linear system solution: %dpardisoPardiso not loaded correctlylibmkl_rt.dylibMKL_Set_Interface_LayerMKL_Get_Max_Threads44X!a LL;OL `0 P  ` @P"&(00P6 8:<=>EF0HIIJ0Y]@_bdrt}000p0PЗ`pp`P0@ 0`    P 1OOOOOP PP P*P4P>PHPRP\PfPpPzPPPPPWWW@XeXXX c&c!`AWARDR@___stack_chk_guardQq@_free@_malloc@_printf@_realloc@dyld_stub_binderq@___bzeroq @___stack_chk_failq(@___tolowerq0@___toupperq8@_callocq@@_dlcloseqH@_dlerrorqP@_dlopenqX@_dlsymq`@_fmodqh@_freeqp@_mach_absolute_timeqx@_mach_timebase_infoq@_mallocq@_memcpyq@_memsetq@_memset_pattern16q@_printfq@_putcharq@_putsq@_reallocq@_sigaction_casuihas_solutionreset_infov_osqp_errorpm quad_form o lftriplet_to_csSuiteSparse_QDLDL_OSQP_ERROR_MESSAGELINSYS_SOLVER_NAMEoheck_termination_strcpysc_mpute_ld_startpy_rho_estimateobj_valpri_dua_inf_norm_cols_KKT9dapt_rhomd_l;et_rho_vecwap_vectorstore_solutioncale_dataolve_linsys_<pdate_nrho_vecxzyinfostatusKKT_linsys_solver_?DDz_tildeEKRWXrestolYZrestol\^s_nprimal_infeasibledual_infeasible`ejjnpqsalidate_ec_datalinsys_solversettingsy}}add_scalsnorm_infmcopyew_prodedarcaled_norm_infet_scalar_diffeanult_scalart_vec_set_scalarit_linsys_solverЖrolishermuteardisoea_ojectint_int_vec_copyvec_copycopy_csc_matreciprprodsqrt m ax in _vec Ь_vec at_ kl_mult_scalar p vec tpose_vec inf_norm_ remult_diag ostmult_diag cols rows _sym_triu sqp_ acts cleanup update_ warm_startversiontend_interrupt_listeneris_interruptedet olve tart_interrupt_listener_default_settings up l bounds upper_boundPArhomax_itereps_alphawarm_startscaled_terminationcheck_terminationdeltapolishverbosetime_limitin_cost ower_bound _xy_Aabsrelprim_infdual_infЦ_refine_iter_normalconeimit_scalingoad_linsys_solverh_еscale_load_linsys_solverdatasolutionheaderspolishfooteretup_headerummarysettingscsc_maticocorm_KKTree_linsys_solver_PAparam2matrixsdonecumsumpinvto_triupympermallocfreecrЀЂ_load_unload_libsympardisolibpardisoЭ12_aatcontroldefaultsinfoorderpvalidЂostreprocess_treeorderhypotdivcomplexmallocreallocfreetversionconfigioccmeйqdldlpardisoqdldlpardisoqdldlpardisomatrices_rho_vec_qdldlpardisoqdldlpardiso_xt_xetreefactorLsolvesolvetsolveset_interface_layerget_max_threads9p P`0@0P  ppppppppppppP``0@ ` pPp ` @ 0J0  00  `@9<  @,  Pq  Xq  `q-  hqG  pq q p*78P8G0T2b8o q0 20C?JRZPet@ `pP9`".0/)pDp,U,f`-w`PдP  ;/@I@5W`k`=H2@0 N  O,; O0bbd~cXZY]\pN`N  xqu!>Sfn@gznPPz.AVpp`y{ )0Ia}zp@P~@ N`/0 p'M:0OI@Wes00ep8К`H$ p5 @"+ @; K @a o   P  7 K * pL/ *S c 8r %| " +  ) < > > PK `C 0M `U @W! PV- W= RJ PY Tf @Hp @L `F @G  R `E  J       & / 7 > D J ^ r z         @ _LINSYS_SOLVER_NAME_OSQP_ERROR_MESSAGE_QDLDL_Lsolve_QDLDL_Ltsolve_QDLDL_etree_QDLDL_factor_QDLDL_solve_SuiteSparse_config_SuiteSparse_divcomplex_SuiteSparse_free_SuiteSparse_hypot_SuiteSparse_malloc_SuiteSparse_realloc_SuiteSparse_tic_SuiteSparse_time_SuiteSparse_toc_SuiteSparse_version__osqp_error_adapt_rho_amd_l1_amd_l2_amd_l_aat_amd_l_control_amd_l_defaults_amd_l_info_amd_l_order_amd_l_post_tree_amd_l_postorder_amd_l_preprocess_amd_l_valid_c_strcpy_check_termination_cold_start_compute_dua_res_compute_dua_tol_compute_inf_norm_cols_KKT_compute_obj_val_compute_pri_res_compute_pri_tol_compute_rho_estimate_copy_csc_mat_copy_settings_csc_cumsum_csc_done_csc_matrix_csc_pinv_csc_spalloc_csc_spfree_csc_symperm_csc_to_triu_form_KKT_free_linsys_solver_pardiso_free_linsys_solver_qdldl_has_solution_init_linsys_solver_init_linsys_solver_pardiso_init_linsys_solver_qdldl_int_vec_set_scalar_is_dual_infeasible_is_primal_infeasible_lh_load_lib_lh_load_pardiso_lh_load_sym_lh_unload_lib_lh_unload_pardiso_limit_scaling_load_linsys_solver_mat_inf_norm_cols_mat_inf_norm_cols_sym_triu_mat_inf_norm_rows_mat_mult_scalar_mat_postmult_diag_mat_premult_diag_mat_tpose_vec_mat_vec_mkl_get_max_threads_mkl_set_interface_layer_oact_osqp_cleanup_osqp_end_interrupt_listener_osqp_is_interrupted_osqp_set_default_settings_osqp_setup_osqp_solve_osqp_start_interrupt_listener_osqp_tic_osqp_toc_osqp_update_A_osqp_update_P_osqp_update_P_A_osqp_update_alpha_osqp_update_bounds_osqp_update_check_termination_osqp_update_delta_osqp_update_eps_abs_osqp_update_eps_dual_inf_osqp_update_eps_prim_inf_osqp_update_eps_rel_osqp_update_lin_cost_osqp_update_lower_bound_osqp_update_max_iter_osqp_update_polish_osqp_update_polish_refine_iter_osqp_update_rho_osqp_update_scaled_termination_osqp_update_time_limit_osqp_update_upper_bound_osqp_update_verbose_osqp_update_warm_start_osqp_version_osqp_warm_start_osqp_warm_start_x_osqp_warm_start_y_pardiso_permute_x_permutet_x_polish_prea_copy_csc_mat_prea_int_vec_copy_prea_vec_copy_print_footer_print_header_print_polish_print_setup_header_print_summary_project_project_normalcone_quad_form_reset_info_scale_data_set_rho_vec_solve_linsys_pardiso_solve_linsys_qdldl_store_solution_swap_vectors_triplet_to_csc_triplet_to_csr_unload_linsys_solver_unscale_data_unscale_solution_update_KKT_A_update_KKT_P_update_KKT_param2_update_info_update_linsys_solver_matrices_pardiso_update_linsys_solver_matrices_qdldl_update_linsys_solver_rho_vec_pardiso_update_linsys_solver_rho_vec_qdldl_update_rho_vec_update_status_update_x_update_xz_tilde_update_y_update_z_validate_data_validate_linsys_solver_validate_settings_vec_add_scalar_vec_add_scaled_vec_copy_vec_ew_max_vec_ew_max_vec_vec_ew_min_vec_ew_min_vec_vec_ew_prod_vec_ew_recipr_vec_ew_sqrt_vec_mean_vec_mult_scalar_vec_norm_inf_vec_norm_inf_diff_vec_prod_vec_scaled_norm_inf_vec_set_scalar___bzero___stack_chk_fail___stack_chk_guard___tolower___toupper_calloc_dlclose_dlerror_dlopen_dlsym_fmod_free_mach_absolute_time_mach_timebase_info_malloc_memcpy_memset_memset_pattern16_printf_putchar_puts_realloc_sigactiondyld_stub_binder_handle_ctrlc_permute_KKT_int_detected_func_pardiso_func_mkl_set_interface_layer_func_mkl_get_max_threads_Pardiso_handle