Sha256: 20f02b237ecf707c25513f20d0d7be65236d55df34e9376f68bae3968bad567d
Contents?: true
Size: 1.47 KB
Versions: 12
Compression:
Stored size: 1.47 KB
Contents
# Puma can serve each request in a thread from an internal thread pool. # The `threads` method setting takes two numbers: a minimum and maximum. # Any libraries that use thread pools should be configured to match # the maximum value specified for Puma. Default is set to 5 threads for minimum # and maximum; this matches the default thread size of Active Record. # max_threads_count = ENV.fetch("RACK_MAX_THREADS") { 5 } min_threads_count = ENV.fetch("RACK_MIN_THREADS") { max_threads_count } threads min_threads_count, max_threads_count # Specifies the `port` that Puma will listen on to receive requests; default is 3000. # port ENV.fetch("PORT") { 3000 } # Specifies the `environment` that Puma will run in. # environment ENV.fetch("RACK_ENV") { "development" } # Specifies the `pidfile` that Puma will use. pidfile ENV.fetch("PIDFILE") { "tmp/pids/server.pid" } # Specifies the number of `workers` to boot in clustered mode. # Workers are forked web server processes. If using threads and workers together # the concurrency of the application would be max `threads` * `workers`. # Workers do not work on JRuby or Windows (both of which do not support # processes). # # workers ENV.fetch("WEB_CONCURRENCY") { 2 } # Use the `preload_app!` method when specifying a `workers` number. # This directive tells Puma to first boot the application and load code # before forking the application. This takes advantage of Copy On Write # process behavior so workers use less memory. # # preload_app!
Version data entries
12 entries across 12 versions & 1 rubygems