// Copyright (C) 2010 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_LAPACk_EVR_Hh_ #define DLIB_LAPACk_EVR_Hh_ #include "fortran_id.h" #include "../matrix.h" namespace dlib { namespace lapack { namespace binding { extern "C" { void DLIB_FORTRAN_ID(dsyevr) (char *jobz, char *range, char *uplo, integer *n, double *a, integer *lda, double *vl, double *vu, integer * il, integer *iu, double *abstol, integer *m, double *w, double *z_, integer *ldz, integer *isuppz, double *work, integer *lwork, integer *iwork, integer *liwork, integer *info); void DLIB_FORTRAN_ID(ssyevr) (char *jobz, char *range, char *uplo, integer *n, float *a, integer *lda, float *vl, float *vu, integer * il, integer *iu, float *abstol, integer *m, float *w, float *z_, integer *ldz, integer *isuppz, float *work, integer *lwork, integer *iwork, integer *liwork, integer *info); } inline int syevr (char jobz, char range, char uplo, integer n, double* a, integer lda, double vl, double vu, integer il, integer iu, double abstol, integer *m, double *w, double *z, integer ldz, integer *isuppz, double *work, integer lwork, integer *iwork, integer liwork) { integer info = 0; DLIB_FORTRAN_ID(dsyevr)(&jobz, &range, &uplo, &n, a, &lda, &vl, &vu, &il, &iu, &abstol, m, w, z, &ldz, isuppz, work, &lwork, iwork, &liwork, &info); return info; } inline int syevr (char jobz, char range, char uplo, integer n, float* a, integer lda, float vl, float vu, integer il, integer iu, float abstol, integer *m, float *w, float *z, integer ldz, integer *isuppz, float *work, integer lwork, integer *iwork, integer liwork) { integer info = 0; DLIB_FORTRAN_ID(ssyevr)(&jobz, &range, &uplo, &n, a, &lda, &vl, &vu, &il, &iu, &abstol, m, w, z, &ldz, isuppz, work, &lwork, iwork, &liwork, &info); return info; } } // ------------------------------------------------------------------------------------ /* * -- LAPACK driver routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER JOBZ, RANGE, UPLO INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N DOUBLE PRECISION ABSTOL, VL, VU * .. * .. Array Arguments .. INTEGER ISUPPZ( * ), IWORK( * ) DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * DSYEVR computes selected eigenvalues and, optionally, eigenvectors * of a real symmetric matrix A. Eigenvalues and eigenvectors can be * selected by specifying either a range of values or a range of * indices for the desired eigenvalues. * * DSYEVR first reduces the matrix A to tridiagonal form T with a call * to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute * the eigenspectrum using Relatively Robust Representations. DSTEMR * computes eigenvalues by the dqds algorithm, while orthogonal * eigenvectors are computed from various "good" L D L^T representations * (also known as Relatively Robust Representations). Gram-Schmidt * orthogonalization is avoided as far as possible. More specifically, * the various steps of the algorithm are as follows. * * For each unreduced block (submatrix) of T, * (a) Compute T - sigma I = L D L^T, so that L and D * define all the wanted eigenvalues to high relative accuracy. * This means that small relative changes in the entries of D and L * cause only small relative changes in the eigenvalues and * eigenvectors. The standard (unfactored) representation of the * tridiagonal matrix T does not have this property in general. * (b) Compute the eigenvalues to suitable accuracy. * If the eigenvectors are desired, the algorithm attains full * accuracy of the computed eigenvalues only right before * the corresponding vectors have to be computed, see steps c) and d). * (c) For each cluster of close eigenvalues, select a new * shift close to the cluster, find a new factorization, and refine * the shifted eigenvalues to suitable accuracy. * (d) For each eigenvalue with a large enough relative separation compute * the corresponding eigenvector by forming a rank revealing twisted * factorization. Go back to (c) for any clusters that remain. * * The desired accuracy of the output can be specified by the input * parameter ABSTOL. * * For more details, see DSTEMR's documentation and: * - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations * to compute orthogonal eigenvectors of symmetric tridiagonal matrices," * Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. * - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and * Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, * 2004. Also LAPACK Working Note 154. * - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric * tridiagonal eigenvalue/eigenvector problem", * Computer Science Division Technical Report No. UCB/CSD-97-971, * UC Berkeley, May 1997. * * * Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested * on machines which conform to the ieee-754 floating point standard. * DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and * when partial spectrum requests are made. * * Normal execution of DSTEMR may create NaNs and infinities and * hence may abort due to a floating point exception in environments * which do not handle NaNs and infinities in the ieee standard default * manner. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * RANGE (input) CHARACTER*1 * = 'A': all eigenvalues will be found. * = 'V': all eigenvalues in the half-open interval (VL,VU] * will be found. * = 'I': the IL-th through IU-th eigenvalues will be found. ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and ********** DSTEIN are called * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA, N) * On entry, the symmetric matrix A. If UPLO = 'U', the * leading N-by-N upper triangular part of A contains the * upper triangular part of the matrix A. If UPLO = 'L', * the leading N-by-N lower triangular part of A contains * the lower triangular part of the matrix A. * On exit, the lower triangle (if UPLO='L') or the upper * triangle (if UPLO='U') of A, including the diagonal, is * destroyed. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * VL (input) DOUBLE PRECISION * VU (input) DOUBLE PRECISION * If RANGE='V', the lower and upper bounds of the interval to * be searched for eigenvalues. VL < VU. * Not referenced if RANGE = 'A' or 'I'. * * IL (input) INTEGER * IU (input) INTEGER * If RANGE='I', the indices (in ascending order) of the * smallest and largest eigenvalues to be returned. * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. * Not referenced if RANGE = 'A' or 'V'. * * ABSTOL (input) DOUBLE PRECISION * The absolute error tolerance for the eigenvalues. * An approximate eigenvalue is accepted as converged * when it is determined to lie in an interval [a,b] * of width less than or equal to * * ABSTOL + EPS * max( |a|,|b| ) , * * where EPS is the machine precision. If ABSTOL is less than * or equal to zero, then EPS*|T| will be used in its place, * where |T| is the 1-norm of the tridiagonal matrix obtained * by reducing A to tridiagonal form. * * See "Computing Small Singular Values of Bidiagonal Matrices * with Guaranteed High Relative Accuracy," by Demmel and * Kahan, LAPACK Working Note #3. * * If high relative accuracy is important, set ABSTOL to * DLAMCH( 'Safe minimum' ). Doing so will guarantee that * eigenvalues are computed to high relative accuracy when * possible in future releases. The current code does not * make any guarantees about high relative accuracy, but * future releases will. See J. Barlow and J. Demmel, * "Computing Accurate Eigensystems of Scaled Diagonally * Dominant Matrices", LAPACK Working Note #7, for a discussion * of which matrices define their eigenvalues to high relative * accuracy. * * M (output) INTEGER * The total number of eigenvalues found. 0 <= M <= N. * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. * * W (output) DOUBLE PRECISION array, dimension (N) * The first M elements contain the selected eigenvalues in * ascending order. * * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) * If JOBZ = 'V', then if INFO = 0, the first M columns of Z * contain the orthonormal eigenvectors of the matrix A * corresponding to the selected eigenvalues, with the i-th * column of Z holding the eigenvector associated with W(i). * If JOBZ = 'N', then Z is not referenced. * Note: the user must ensure that at least max(1,M) columns are * supplied in the array Z; if RANGE = 'V', the exact value of M * is not known in advance and an upper bound must be used. * Supplying N columns is always safe. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) * The support of the eigenvectors in Z, i.e., the indices * indicating the nonzero elements in Z. The i-th eigenvector * is nonzero only in elements ISUPPZ( 2*i-1 ) through * ISUPPZ( 2*i ). ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 * * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,26*N). * For optimal efficiency, LWORK >= (NB+6)*N, * where NB is the max of the blocksize for DSYTRD and DORMTR * returned by ILAENV. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) * On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. * * LIWORK (input) INTEGER * The dimension of the array IWORK. LIWORK >= max(1,10*N). * * If LIWORK = -1, then a workspace query is assumed; the * routine only calculates the optimal size of the IWORK array, * returns this value as the first entry of the IWORK array, and * no error message related to LIWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: Internal error * * Further Details * =============== * * Based on contributions by * Inderjit Dhillon, IBM Almaden, USA * Osni Marques, LBNL/NERSC, USA * Ken Stanley, Computer Science Division, University of * California at Berkeley, USA * Jason Riedy, Computer Science Division, University of * California at Berkeley, USA * * ===================================================================== */ // ------------------------------------------------------------------------------------ template < typename T, long NR1, long NR2, long NR3, long NR4, long NC1, long NC2, long NC3, long NC4, typename MM > int syevr ( const char jobz, const char range, const char uplo, matrix<T,NR1,NC1,MM,column_major_layout>& a, const double vl, const double vu, const integer il, const integer iu, const double abstol, integer& num_eigenvalues_found, matrix<T,NR2,NC2,MM,column_major_layout>& w, matrix<T,NR3,NC3,MM,column_major_layout>& z, matrix<integer,NR4,NC4,MM,column_major_layout>& isuppz ) { matrix<T,0,1,MM,column_major_layout> work; matrix<integer,0,1,MM,column_major_layout> iwork; const long n = a.nr(); w.set_size(n,1); isuppz.set_size(2*n, 1); if (jobz == 'V') { z.set_size(n,n); } else { z.set_size(NR3?NR3:1, NC3?NC3:1); } // figure out how big the workspace needs to be. T work_size = 1; integer iwork_size = 1; int info = binding::syevr(jobz, range, uplo, n, &a(0,0), a.nr(), vl, vu, il, iu, abstol, &num_eigenvalues_found, &w(0,0), &z(0,0), z.nr(), &isuppz(0,0), &work_size, -1, &iwork_size, -1); if (info != 0) return info; if (work.size() < work_size) work.set_size(static_cast<long>(work_size), 1); if (iwork.size() < iwork_size) iwork.set_size(iwork_size, 1); // compute the actual decomposition info = binding::syevr(jobz, range, uplo, n, &a(0,0), a.nr(), vl, vu, il, iu, abstol, &num_eigenvalues_found, &w(0,0), &z(0,0), z.nr(), &isuppz(0,0), &work(0,0), work.size(), &iwork(0,0), iwork.size()); return info; } // ------------------------------------------------------------------------------------ template < typename T, long NR1, long NR2, long NR3, long NR4, long NC1, long NC2, long NC3, long NC4, typename MM > int syevr ( const char jobz, const char range, char uplo, matrix<T,NR1,NC1,MM,row_major_layout>& a, const double vl, const double vu, const integer il, const integer iu, const double abstol, integer& num_eigenvalues_found, matrix<T,NR2,NC2,MM,row_major_layout>& w, matrix<T,NR3,NC3,MM,row_major_layout>& z, matrix<integer,NR4,NC4,MM,row_major_layout>& isuppz ) { matrix<T,0,1,MM,row_major_layout> work; matrix<integer,0,1,MM,row_major_layout> iwork; if (uplo == 'L') uplo = 'U'; else uplo = 'L'; const long n = a.nr(); w.set_size(n,1); isuppz.set_size(2*n, 1); if (jobz == 'V') { z.set_size(n,n); } else { z.set_size(NR3?NR3:1, NC3?NC3:1); } // figure out how big the workspace needs to be. T work_size = 1; integer iwork_size = 1; int info = binding::syevr(jobz, range, uplo, n, &a(0,0), a.nc(), vl, vu, il, iu, abstol, &num_eigenvalues_found, &w(0,0), &z(0,0), z.nc(), &isuppz(0,0), &work_size, -1, &iwork_size, -1); if (info != 0) return info; if (work.size() < work_size) work.set_size(static_cast<long>(work_size), 1); if (iwork.size() < iwork_size) iwork.set_size(iwork_size, 1); // compute the actual decomposition info = binding::syevr(jobz, range, uplo, n, &a(0,0), a.nc(), vl, vu, il, iu, abstol, &num_eigenvalues_found, &w(0,0), &z(0,0), z.nc(), &isuppz(0,0), &work(0,0), work.size(), &iwork(0,0), iwork.size()); z = trans(z); return info; } // ------------------------------------------------------------------------------------ } } // ---------------------------------------------------------------------------------------- #endif // DLIB_LAPACk_EVR_Hh_