// Copyright (C) 2012 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #include <dlib/clustering.h> #include "tester.h" namespace { using namespace test; using namespace dlib; using namespace std; logger dlog("test.clustering"); // ---------------------------------------------------------------------------------------- void make_test_graph( dlib::rand& rnd, std::vector<sample_pair>& edges, std::vector<unsigned long>& labels, const int groups, const int group_size, const int noise_level, const double missed_edges ) { labels.resize(groups*group_size); for (unsigned long i = 0; i < labels.size(); ++i) { labels[i] = i/group_size; } edges.clear(); for (int i = 0; i < groups; ++i) { for (int j = 0; j < group_size; ++j) { for (int k = 0; k < group_size; ++k) { if (j == k) continue; if (rnd.get_random_double() < missed_edges) continue; edges.push_back(sample_pair(j+group_size*i, k+group_size*i, 1)); } } } for (int k = 0; k < groups*noise_level; ++k) { const int i = rnd.get_random_32bit_number()%labels.size(); const int j = rnd.get_random_32bit_number()%labels.size(); edges.push_back(sample_pair(i,j,1)); } } // ---------------------------------------------------------------------------------------- void make_modularity_matrices ( const std::vector<sample_pair>& edges, matrix<double>& A, matrix<double>& P, double& m ) { const unsigned long num_nodes = max_index_plus_one(edges); A.set_size(num_nodes, num_nodes); P.set_size(num_nodes, num_nodes); A = 0; P = 0; std::vector<double> k(num_nodes,0); for (unsigned long i = 0; i < edges.size(); ++i) { const unsigned long n1 = edges[i].index1(); const unsigned long n2 = edges[i].index2(); k[n1] += edges[i].distance(); if (n1 != n2) { k[n2] += edges[i].distance(); A(n2,n1) += edges[i].distance(); } A(n1,n2) += edges[i].distance(); } m = sum(A)/2; for (long r = 0; r < P.nr(); ++r) { for (long c = 0; c < P.nc(); ++c) { P(r,c) = k[r]*k[c]/(2*m); } } } double compute_modularity_simple ( const std::vector<sample_pair>& edges, std::vector<unsigned long> labels ) { double m; matrix<double> A,P; make_modularity_matrices(edges, A, P, m); matrix<double> B = A - P; double Q = 0; for (long r = 0; r < B.nr(); ++r) { for (long c = 0; c < B.nc(); ++c) { if (labels[r] == labels[c]) { Q += B(r,c); } } } return 1.0/(2*m) * Q; } // ---------------------------------------------------------------------------------------- void test_modularity(dlib::rand& rnd) { print_spinner(); std::vector<sample_pair> edges; std::vector<ordered_sample_pair> oedges; std::vector<unsigned long> labels; make_test_graph(rnd, edges, labels, 10, 30, 3, 0.10); if (rnd.get_random_double() < 0.5) remove_duplicate_edges(edges); convert_unordered_to_ordered(edges, oedges); const double m1 = modularity(edges, labels); const double m2 = compute_modularity_simple(edges, labels); const double m3 = modularity(oedges, labels); DLIB_TEST(std::abs(m1-m2) < 1e-12); DLIB_TEST(std::abs(m2-m3) < 1e-12); DLIB_TEST(std::abs(m3-m1) < 1e-12); } void test_newman_clustering(dlib::rand& rnd) { print_spinner(); std::vector<sample_pair> edges; std::vector<unsigned long> labels; make_test_graph(rnd, edges, labels, 5, 30, 3, 0.10); if (rnd.get_random_double() < 0.5) remove_duplicate_edges(edges); std::vector<unsigned long> labels2; unsigned long num_clusters = newman_cluster(edges, labels2); DLIB_TEST(labels.size() == labels2.size()); DLIB_TEST(num_clusters == 5); for (unsigned long i = 0; i < labels.size(); ++i) { for (unsigned long j = 0; j < labels.size(); ++j) { if (labels[i] == labels[j]) { DLIB_TEST(labels2[i] == labels2[j]); } else { DLIB_TEST(labels2[i] != labels2[j]); } } } } void test_chinese_whispers(dlib::rand& rnd) { print_spinner(); std::vector<sample_pair> edges; std::vector<unsigned long> labels; make_test_graph(rnd, edges, labels, 5, 30, 3, 0.10); if (rnd.get_random_double() < 0.5) remove_duplicate_edges(edges); std::vector<unsigned long> labels2; unsigned long num_clusters; if (rnd.get_random_double() < 0.5) num_clusters = chinese_whispers(edges, labels2, 200, rnd); else num_clusters = chinese_whispers(edges, labels2); DLIB_TEST(labels.size() == labels2.size()); DLIB_TEST(num_clusters == 5); for (unsigned long i = 0; i < labels.size(); ++i) { for (unsigned long j = 0; j < labels.size(); ++j) { if (labels[i] == labels[j]) { DLIB_TEST(labels2[i] == labels2[j]); } else { DLIB_TEST(labels2[i] != labels2[j]); } } } } void test_bottom_up_clustering() { std::vector<dpoint> pts; pts.push_back(dpoint(0.0,0.0)); pts.push_back(dpoint(0.5,0.0)); pts.push_back(dpoint(0.5,0.5)); pts.push_back(dpoint(0.0,0.5)); pts.push_back(dpoint(3.0,3.0)); pts.push_back(dpoint(3.5,3.0)); pts.push_back(dpoint(3.5,3.5)); pts.push_back(dpoint(3.0,3.5)); pts.push_back(dpoint(7.0,7.0)); pts.push_back(dpoint(7.5,7.0)); pts.push_back(dpoint(7.5,7.5)); pts.push_back(dpoint(7.0,7.5)); matrix<double> dists(pts.size(), pts.size()); for (long r = 0; r < dists.nr(); ++r) for (long c = 0; c < dists.nc(); ++c) dists(r,c) = length(pts[r]-pts[c]); matrix<unsigned long,0,1> truth(12); truth = 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2; std::vector<unsigned long> labels; DLIB_TEST(bottom_up_cluster(dists, labels, 3) == 3); DLIB_TEST(mat(labels) == truth); DLIB_TEST(bottom_up_cluster(dists, labels, 1, 4.0) == 3); DLIB_TEST(mat(labels) == truth); DLIB_TEST(bottom_up_cluster(dists, labels, 1, 4.95) == 2); truth = 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1; DLIB_TEST(mat(labels) == truth); DLIB_TEST(bottom_up_cluster(dists, labels, 1) == 1); truth = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; DLIB_TEST(mat(labels) == truth); dists.set_size(0,0); DLIB_TEST(bottom_up_cluster(dists, labels, 3) == 0); DLIB_TEST(labels.size() == 0); DLIB_TEST(bottom_up_cluster(dists, labels, 1) == 0); DLIB_TEST(labels.size() == 0); dists.set_size(1,1); dists = 1; DLIB_TEST(bottom_up_cluster(dists, labels, 3) == 1); DLIB_TEST(labels.size() == 1); DLIB_TEST(labels[0] == 0); DLIB_TEST(bottom_up_cluster(dists, labels, 1) == 1); DLIB_TEST(labels.size() == 1); DLIB_TEST(labels[0] == 0); DLIB_TEST(bottom_up_cluster(dists, labels, 1, 0) == 1); DLIB_TEST(labels.size() == 1); DLIB_TEST(labels[0] == 0); dists.set_size(2,2); dists = 1; DLIB_TEST(bottom_up_cluster(dists, labels, 3) == 2); DLIB_TEST(labels.size() == 2); DLIB_TEST(labels[0] == 0); DLIB_TEST(labels[1] == 1); DLIB_TEST(bottom_up_cluster(dists, labels, 1) == 1); DLIB_TEST(labels.size() == 2); DLIB_TEST(labels[0] == 0); DLIB_TEST(labels[1] == 0); DLIB_TEST(bottom_up_cluster(dists, labels, 1, 1) == 1); DLIB_TEST(labels.size() == 2); DLIB_TEST(labels[0] == 0); DLIB_TEST(labels[1] == 0); DLIB_TEST(bottom_up_cluster(dists, labels, 1, 0.999) == 2); DLIB_TEST(labels.size() == 2); DLIB_TEST(labels[0] == 0); DLIB_TEST(labels[1] == 1); } void test_segment_number_line() { dlib::rand rnd; std::vector<double> x; for (int i = 0; i < 5000; ++i) { x.push_back(rnd.get_double_in_range(-1.5, -1.01)); x.push_back(rnd.get_double_in_range(-0.99, -0.01)); x.push_back(rnd.get_double_in_range(0.01, 1)); } auto r = segment_number_line(x,1); std::sort(r.begin(), r.end()); DLIB_TEST(r.size() == 3); DLIB_TEST(-1.5 <= r[0].lower && r[0].lower < r[0].upper && r[0].upper <= -1.01); DLIB_TEST(-0.99 <= r[1].lower && r[1].lower < r[1].upper && r[1].upper <= -0.01); DLIB_TEST(0.01 <= r[2].lower && r[2].lower < r[2].upper && r[2].upper <= 1); x.clear(); for (int i = 0; i < 5000; ++i) { x.push_back(rnd.get_double_in_range(-2, 1)); x.push_back(rnd.get_double_in_range(-2, 1)); x.push_back(rnd.get_double_in_range(-2, 1)); } r = segment_number_line(x,1); DLIB_TEST(r.size() == 3); r = segment_number_line(x,1.5); DLIB_TEST(r.size() == 2); r = segment_number_line(x,10.5); DLIB_TEST(r.size() == 1); DLIB_TEST(-2 <= r[0].lower && r[0].lower < r[0].upper && r[0].upper <= 1); } class test_clustering : public tester { public: test_clustering ( ) : tester ("test_clustering", "Runs tests on the clustering routines.") {} void perform_test ( ) { test_bottom_up_clustering(); test_segment_number_line(); dlib::rand rnd; std::vector<sample_pair> edges; std::vector<unsigned long> labels; DLIB_TEST(newman_cluster(edges, labels) == 0); DLIB_TEST(chinese_whispers(edges, labels) == 0); edges.push_back(sample_pair(0,1,1)); DLIB_TEST(newman_cluster(edges, labels) == 1); DLIB_TEST(labels.size() == 2); DLIB_TEST(chinese_whispers(edges, labels) == 1); DLIB_TEST(labels.size() == 2); edges.clear(); edges.push_back(sample_pair(0,0,1)); DLIB_TEST(newman_cluster(edges, labels) == 1); DLIB_TEST(labels.size() == 1); DLIB_TEST(chinese_whispers(edges, labels) == 1); DLIB_TEST(labels.size() == 1); edges.clear(); edges.push_back(sample_pair(1,1,1)); DLIB_TEST(newman_cluster(edges, labels) == 1); DLIB_TEST(labels.size() == 2); DLIB_TEST(chinese_whispers(edges, labels) == 2); DLIB_TEST(labels.size() == 2); edges.push_back(sample_pair(0,0,1)); DLIB_TEST(newman_cluster(edges, labels) == 2); DLIB_TEST(labels.size() == 2); DLIB_TEST(chinese_whispers(edges, labels) == 2); DLIB_TEST(labels.size() == 2); for (int i = 0; i < 10; ++i) test_modularity(rnd); for (int i = 0; i < 10; ++i) test_newman_clustering(rnd); for (int i = 0; i < 10; ++i) test_chinese_whispers(rnd); } } a; }