// Copyright (C) 2010 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_SVm_ONE_CLASS_TRAINER_Hh_ #define DLIB_SVm_ONE_CLASS_TRAINER_Hh_ #include "svm_one_class_trainer_abstract.h" #include <cmath> #include <limits> #include <sstream> #include "../matrix.h" #include "../algs.h" #include "function.h" #include "kernel.h" #include "../optimization/optimization_solve_qp3_using_smo.h" namespace dlib { // ---------------------------------------------------------------------------------------- template < typename K > class svm_one_class_trainer { public: typedef K kernel_type; typedef typename kernel_type::scalar_type scalar_type; typedef typename kernel_type::sample_type sample_type; typedef typename kernel_type::mem_manager_type mem_manager_type; typedef decision_function<kernel_type> trained_function_type; svm_one_class_trainer ( ) : nu(0.1), cache_size(200), eps(0.001) { } svm_one_class_trainer ( const kernel_type& kernel_, const scalar_type& nu_ ) : kernel_function(kernel_), nu(nu_), cache_size(200), eps(0.001) { // make sure requires clause is not broken DLIB_ASSERT(0 < nu && nu <= 1, "\tsvm_one_class_trainer::svm_one_class_trainer(kernel,nu)" << "\n\t invalid inputs were given to this function" << "\n\t nu: " << nu ); } void set_cache_size ( long cache_size_ ) { // make sure requires clause is not broken DLIB_ASSERT(cache_size_ > 0, "\tvoid svm_one_class_trainer::set_cache_size(cache_size_)" << "\n\t invalid inputs were given to this function" << "\n\t cache_size: " << cache_size_ ); cache_size = cache_size_; } long get_cache_size ( ) const { return cache_size; } void set_epsilon ( scalar_type eps_ ) { // make sure requires clause is not broken DLIB_ASSERT(eps_ > 0, "\tvoid svm_one_class_trainer::set_epsilon(eps_)" << "\n\t invalid inputs were given to this function" << "\n\t eps: " << eps_ ); eps = eps_; } const scalar_type get_epsilon ( ) const { return eps; } void set_kernel ( const kernel_type& k ) { kernel_function = k; } const kernel_type& get_kernel ( ) const { return kernel_function; } void set_nu ( scalar_type nu_ ) { // make sure requires clause is not broken DLIB_ASSERT(0 < nu_ && nu_ <= 1, "\tvoid svm_one_class_trainer::set_nu(nu_)" << "\n\t invalid inputs were given to this function" << "\n\t nu: " << nu_ ); nu = nu_; } const scalar_type get_nu ( ) const { return nu; } template < typename in_sample_vector_type > const decision_function<kernel_type> train ( const in_sample_vector_type& x ) const { return do_train(mat(x)); } void swap ( svm_one_class_trainer& item ) { exchange(kernel_function, item.kernel_function); exchange(nu, item.nu); exchange(cache_size, item.cache_size); exchange(eps, item.eps); } private: // ------------------------------------------------------------------------------------ template < typename in_sample_vector_type > const decision_function<kernel_type> do_train ( const in_sample_vector_type& x ) const { typedef typename K::scalar_type scalar_type; typedef typename decision_function<K>::sample_vector_type sample_vector_type; typedef typename decision_function<K>::scalar_vector_type scalar_vector_type; // make sure requires clause is not broken DLIB_ASSERT(is_col_vector(x) && x.size() > 0, "\tdecision_function svm_one_class_trainer::train(x)" << "\n\t invalid inputs were given to this function" << "\n\t x.nr(): " << x.nr() << "\n\t x.nc(): " << x.nc() ); scalar_vector_type alpha; solve_qp3_using_smo<scalar_vector_type> solver; solver(symmetric_matrix_cache<float>(kernel_matrix(kernel_function,x), cache_size), zeros_matrix<scalar_type>(x.size(),1), ones_matrix<scalar_type>(x.size(),1), nu*x.size(), 1, 1, alpha, eps); scalar_type rho; calculate_rho(alpha,solver.get_gradient(),rho); // count the number of support vectors const long sv_count = (long)sum(alpha != 0); scalar_vector_type sv_alpha; sample_vector_type support_vectors; // size these column vectors so that they have an entry for each support vector sv_alpha.set_size(sv_count); support_vectors.set_size(sv_count); // load the support vectors and their alpha values into these new column matrices long idx = 0; for (long i = 0; i < alpha.nr(); ++i) { if (alpha(i) != 0) { sv_alpha(idx) = alpha(i); support_vectors(idx) = x(i); ++idx; } } // now return the decision function return decision_function<K> (sv_alpha, rho, kernel_function, support_vectors); } // ------------------------------------------------------------------------------------ template < typename scalar_vector_type > void calculate_rho( const scalar_vector_type& alpha, const scalar_vector_type& df, scalar_type& rho ) const { using namespace std; long num_p_free = 0; scalar_type sum_p_free = 0; scalar_type upper_bound_p; scalar_type lower_bound_p; find_min_and_max(df, upper_bound_p, lower_bound_p); for(long i = 0; i < alpha.nr(); ++i) { if(alpha(i) == 1) { if (df(i) > upper_bound_p) upper_bound_p = df(i); } else if(alpha(i) == 0) { if (df(i) < lower_bound_p) lower_bound_p = df(i); } else { ++num_p_free; sum_p_free += df(i); } } scalar_type r1; if(num_p_free > 0) r1 = sum_p_free/num_p_free; else r1 = (upper_bound_p+lower_bound_p)/2; rho = r1; } kernel_type kernel_function; scalar_type nu; long cache_size; scalar_type eps; }; // end of class svm_one_class_trainer // ---------------------------------------------------------------------------------------- template <typename K> void swap ( svm_one_class_trainer<K>& a, svm_one_class_trainer<K>& b ) { a.swap(b); } // ---------------------------------------------------------------------------------------- } #endif // DLIB_SVm_ONE_CLASS_TRAINER_Hh_