Sha256: 1b2cee146b343759d9fe59c7c0d76034f0a582e853f3544be9544d6dba99e260
Contents?: true
Size: 1.31 KB
Versions: 1
Compression:
Stored size: 1.31 KB
Contents
#!/usr/bin/env python # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os from fasttext import train_supervised def print_results(N, p, r): print("N\t" + str(N)) print("P@{}\t{:.3f}".format(1, p)) print("R@{}\t{:.3f}".format(1, r)) if __name__ == "__main__": train_data = os.path.join(os.getenv("DATADIR", ''), 'cooking.train') valid_data = os.path.join(os.getenv("DATADIR", ''), 'cooking.valid') # train_supervised uses the same arguments and defaults as the fastText cli model = train_supervised( input=train_data, epoch=25, lr=1.0, wordNgrams=2, verbose=2, minCount=1 ) print_results(*model.test(valid_data)) model = train_supervised( input=train_data, epoch=25, lr=1.0, wordNgrams=2, verbose=2, minCount=1, loss="hs" ) print_results(*model.test(valid_data)) model.save_model("cooking.bin") model.quantize(input=train_data, qnorm=True, retrain=True, cutoff=100000) print_results(*model.test(valid_data)) model.save_model("cooking.ftz")
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
fasttext-0.1.0 | vendor/fastText/python/doc/examples/train_supervised.py |