// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2010 the V8 project authors. All rights reserved. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "mips/assembler-mips-inl.h" #include "serialize.h" namespace v8 { namespace internal { const Register no_reg = { -1 }; const Register zero_reg = { 0 }; const Register at = { 1 }; const Register v0 = { 2 }; const Register v1 = { 3 }; const Register a0 = { 4 }; const Register a1 = { 5 }; const Register a2 = { 6 }; const Register a3 = { 7 }; const Register t0 = { 8 }; const Register t1 = { 9 }; const Register t2 = { 10 }; const Register t3 = { 11 }; const Register t4 = { 12 }; const Register t5 = { 13 }; const Register t6 = { 14 }; const Register t7 = { 15 }; const Register s0 = { 16 }; const Register s1 = { 17 }; const Register s2 = { 18 }; const Register s3 = { 19 }; const Register s4 = { 20 }; const Register s5 = { 21 }; const Register s6 = { 22 }; const Register s7 = { 23 }; const Register t8 = { 24 }; const Register t9 = { 25 }; const Register k0 = { 26 }; const Register k1 = { 27 }; const Register gp = { 28 }; const Register sp = { 29 }; const Register s8_fp = { 30 }; const Register ra = { 31 }; const FPURegister no_creg = { -1 }; const FPURegister f0 = { 0 }; const FPURegister f1 = { 1 }; const FPURegister f2 = { 2 }; const FPURegister f3 = { 3 }; const FPURegister f4 = { 4 }; const FPURegister f5 = { 5 }; const FPURegister f6 = { 6 }; const FPURegister f7 = { 7 }; const FPURegister f8 = { 8 }; const FPURegister f9 = { 9 }; const FPURegister f10 = { 10 }; const FPURegister f11 = { 11 }; const FPURegister f12 = { 12 }; const FPURegister f13 = { 13 }; const FPURegister f14 = { 14 }; const FPURegister f15 = { 15 }; const FPURegister f16 = { 16 }; const FPURegister f17 = { 17 }; const FPURegister f18 = { 18 }; const FPURegister f19 = { 19 }; const FPURegister f20 = { 20 }; const FPURegister f21 = { 21 }; const FPURegister f22 = { 22 }; const FPURegister f23 = { 23 }; const FPURegister f24 = { 24 }; const FPURegister f25 = { 25 }; const FPURegister f26 = { 26 }; const FPURegister f27 = { 27 }; const FPURegister f28 = { 28 }; const FPURegister f29 = { 29 }; const FPURegister f30 = { 30 }; const FPURegister f31 = { 31 }; int ToNumber(Register reg) { ASSERT(reg.is_valid()); const int kNumbers[] = { 0, // zero_reg 1, // at 2, // v0 3, // v1 4, // a0 5, // a1 6, // a2 7, // a3 8, // t0 9, // t1 10, // t2 11, // t3 12, // t4 13, // t5 14, // t6 15, // t7 16, // s0 17, // s1 18, // s2 19, // s3 20, // s4 21, // s5 22, // s6 23, // s7 24, // t8 25, // t9 26, // k0 27, // k1 28, // gp 29, // sp 30, // s8_fp 31, // ra }; return kNumbers[reg.code()]; } Register ToRegister(int num) { ASSERT(num >= 0 && num < kNumRegisters); const Register kRegisters[] = { zero_reg, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7, s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, s8_fp, ra }; return kRegisters[num]; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo. const int RelocInfo::kApplyMask = 0; // Patch the code at the current address with the supplied instructions. void RelocInfo::PatchCode(byte* instructions, int instruction_count) { Instr* pc = reinterpret_cast(pc_); Instr* instr = reinterpret_cast(instructions); for (int i = 0; i < instruction_count; i++) { *(pc + i) = *(instr + i); } // Indicate that code has changed. CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); } // Patch the code at the current PC with a call to the target address. // Additional guard instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Patch the code at the current address with a call to the target. UNIMPLEMENTED_MIPS(); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand. // See assembler-mips-inl.h for inlined constructors. Operand::Operand(Handle handle) { rm_ = no_reg; // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; ASSERT(!Heap::InNewSpace(obj)); if (obj->IsHeapObject()) { imm32_ = reinterpret_cast(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // No relocation needed. imm32_ = reinterpret_cast(obj); rmode_ = RelocInfo::NONE; } } MemOperand::MemOperand(Register rm, int16_t offset) : Operand(rm) { offset_ = offset; } // ----------------------------------------------------------------------------- // Implementation of Assembler. static const int kMinimalBufferSize = 4*KB; static byte* spare_buffer_ = NULL; Assembler::Assembler(void* buffer, int buffer_size) { if (buffer == NULL) { // Do our own buffer management. if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; if (spare_buffer_ != NULL) { buffer = spare_buffer_; spare_buffer_ = NULL; } } if (buffer == NULL) { buffer_ = NewArray(buffer_size); } else { buffer_ = static_cast(buffer); } buffer_size_ = buffer_size; own_buffer_ = true; } else { // Use externally provided buffer instead. ASSERT(buffer_size > 0); buffer_ = static_cast(buffer); buffer_size_ = buffer_size; own_buffer_ = false; } // Setup buffer pointers. ASSERT(buffer_ != NULL); pc_ = buffer_; reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); current_statement_position_ = RelocInfo::kNoPosition; current_position_ = RelocInfo::kNoPosition; written_statement_position_ = current_statement_position_; written_position_ = current_position_; } Assembler::~Assembler() { if (own_buffer_) { if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { spare_buffer_ = buffer_; } else { DeleteArray(buffer_); } } } void Assembler::GetCode(CodeDesc* desc) { ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap // Setup code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // The link chain is terminated by a negative code position (must be aligned). const int kEndOfChain = -4; bool Assembler::is_branch(Instr instr) { uint32_t opcode = ((instr & kOpcodeMask)); uint32_t rt_field = ((instr & kRtFieldMask)); uint32_t rs_field = ((instr & kRsFieldMask)); // Checks if the instruction is a branch. return opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL|| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || rt_field == BLTZAL || rt_field == BGEZAL)) || (opcode == COP1 && rs_field == BC1); // Coprocessor branch. } int Assembler::target_at(int32_t pos) { Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { // Emitted label constant, not part of a branch. return instr - (Code::kHeaderSize - kHeapObjectTag); } // Check we have a branch instruction. ASSERT(is_branch(instr)); // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming // the compiler uses arithmectic shifts for signed integers. int32_t imm18 = ((instr & static_cast(kImm16Mask)) << 16) >> 14; return pos + kBranchPCOffset + imm18; } void Assembler::target_at_put(int32_t pos, int32_t target_pos) { Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { ASSERT(target_pos == kEndOfChain || target_pos >= 0); // Emitted label constant, not part of a branch. // Make label relative to Code* of generated Code object. instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); return; } ASSERT(is_branch(instr)); int32_t imm18 = target_pos - (pos + kBranchPCOffset); ASSERT((imm18 & 3) == 0); instr &= ~kImm16Mask; int32_t imm16 = imm18 >> 2; ASSERT(is_int16(imm16)); instr_at_put(pos, instr | (imm16 & kImm16Mask)); } void Assembler::print(Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l = *L; PrintF("unbound label"); while (l.is_linked()) { PrintF("@ %d ", l.pos()); Instr instr = instr_at(l.pos()); if ((instr & ~kImm16Mask) == 0) { PrintF("value\n"); } else { PrintF("%d\n", instr); } next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position while (L->is_linked()) { int32_t fixup_pos = L->pos(); next(L); // call next before overwriting link with target at fixup_pos target_at_put(fixup_pos, pos); } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::link_to(Label* L, Label* appendix) { if (appendix->is_linked()) { if (L->is_linked()) { // Append appendix to L's list. int fixup_pos; int link = L->pos(); do { fixup_pos = link; link = target_at(fixup_pos); } while (link > 0); ASSERT(link == kEndOfChain); target_at_put(fixup_pos, appendix->pos()); } else { // L is empty, simply use appendix *L = *appendix; } } appendix->Unuse(); // appendix should not be used anymore } void Assembler::bind(Label* L) { ASSERT(!L->is_bound()); // label can only be bound once bind_to(L, pc_offset()); } void Assembler::next(Label* L) { ASSERT(L->is_linked()); int link = target_at(L->pos()); if (link > 0) { L->link_to(link); } else { ASSERT(link == kEndOfChain); L->Unuse(); } } // We have to use a temporary register for things that can be relocated even // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. bool Assembler::MustUseAt(RelocInfo::Mode rmode) { if (rmode == RelocInfo::EXTERNAL_REFERENCE) { return Serializer::enabled(); } else if (rmode == RelocInfo::NONE) { return false; } return true; } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa, SecondaryField func) { ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); Instr instr = opcode | fmt | (ft.code() << 16) | (fs.code() << kFsShift) | (fd.code() << 6) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | (fd.code() << 6) | func; emit(instr); } // Instructions with immediate value. // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt, int32_t j) { ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (j & kImm16Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, int32_t j) { ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j) { ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) | (j & kImm16Mask); emit(instr); } // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrJump(Opcode opcode, uint32_t address) { ASSERT(is_uint26(address)); Instr instr = opcode | address; emit(instr); } int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { int32_t target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link } else { target_pos = kEndOfChain; } L->link_to(pc_offset()); } int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); return offset; } void Assembler::label_at_put(Label* L, int at_offset) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link } else { target_pos = kEndOfChain; } L->link_to(at_offset); instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); } } //------- Branch and jump instructions -------- void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); } void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); } void Assembler::beq(Register rs, Register rt, int16_t offset) { GenInstrImmediate(BEQ, rs, rt, offset); } void Assembler::bgez(Register rs, int16_t offset) { GenInstrImmediate(REGIMM, rs, BGEZ, offset); } void Assembler::bgezal(Register rs, int16_t offset) { GenInstrImmediate(REGIMM, rs, BGEZAL, offset); } void Assembler::bgtz(Register rs, int16_t offset) { GenInstrImmediate(BGTZ, rs, zero_reg, offset); } void Assembler::blez(Register rs, int16_t offset) { GenInstrImmediate(BLEZ, rs, zero_reg, offset); } void Assembler::bltz(Register rs, int16_t offset) { GenInstrImmediate(REGIMM, rs, BLTZ, offset); } void Assembler::bltzal(Register rs, int16_t offset) { GenInstrImmediate(REGIMM, rs, BLTZAL, offset); } void Assembler::bne(Register rs, Register rt, int16_t offset) { GenInstrImmediate(BNE, rs, rt, offset); } void Assembler::j(int32_t target) { ASSERT(is_uint28(target) && ((target & 3) == 0)); GenInstrJump(J, target >> 2); } void Assembler::jr(Register rs) { GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); } void Assembler::jal(int32_t target) { ASSERT(is_uint28(target) && ((target & 3) == 0)); GenInstrJump(JAL, target >> 2); } void Assembler::jalr(Register rs, Register rd) { GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); } //-------Data-processing-instructions--------- // Arithmetic. void Assembler::add(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADD); } void Assembler::addu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); } void Assembler::addi(Register rd, Register rs, int32_t j) { GenInstrImmediate(ADDI, rs, rd, j); } void Assembler::addiu(Register rd, Register rs, int32_t j) { GenInstrImmediate(ADDIU, rs, rd, j); } void Assembler::sub(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUB); } void Assembler::subu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); } void Assembler::mul(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); } void Assembler::mult(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); } void Assembler::multu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); } void Assembler::div(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); } void Assembler::divu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); } // Logical. void Assembler::and_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); } void Assembler::andi(Register rt, Register rs, int32_t j) { GenInstrImmediate(ANDI, rs, rt, j); } void Assembler::or_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); } void Assembler::ori(Register rt, Register rs, int32_t j) { GenInstrImmediate(ORI, rs, rt, j); } void Assembler::xor_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); } void Assembler::xori(Register rt, Register rs, int32_t j) { GenInstrImmediate(XORI, rs, rt, j); } void Assembler::nor(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); } // Shifts. void Assembler::sll(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); } void Assembler::sllv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); } void Assembler::srl(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); } void Assembler::srlv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); } void Assembler::sra(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); } void Assembler::srav(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); } //------------Memory-instructions------------- void Assembler::lb(Register rd, const MemOperand& rs) { GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); } void Assembler::lbu(Register rd, const MemOperand& rs) { GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); } void Assembler::lw(Register rd, const MemOperand& rs) { GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); } void Assembler::sb(Register rd, const MemOperand& rs) { GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); } void Assembler::sw(Register rd, const MemOperand& rs) { GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); } void Assembler::lui(Register rd, int32_t j) { GenInstrImmediate(LUI, zero_reg, rd, j); } //-------------Misc-instructions-------------- // Break / Trap instructions. void Assembler::break_(uint32_t code) { ASSERT((code & ~0xfffff) == 0); Instr break_instr = SPECIAL | BREAK | (code << 6); emit(break_instr); } void Assembler::tge(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tgeu(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tlt(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tltu(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::teq(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tne(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } // Move from HI/LO register. void Assembler::mfhi(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); } void Assembler::mflo(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); } // Set on less than instructions. void Assembler::slt(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); } void Assembler::sltu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); } void Assembler::slti(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTI, rs, rt, j); } void Assembler::sltiu(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTIU, rs, rt, j); } //--------Coprocessor-instructions---------------- // Load, store, move. void Assembler::lwc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); } void Assembler::ldc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(LDC1, src.rm(), fd, src.offset_); } void Assembler::swc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); } void Assembler::sdc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(SDC1, src.rm(), fd, src.offset_); } void Assembler::mtc1(FPURegister fs, Register rt) { GenInstrRegister(COP1, MTC1, rt, fs, f0); } void Assembler::mthc1(FPURegister fs, Register rt) { GenInstrRegister(COP1, MTHC1, rt, fs, f0); } void Assembler::mfc1(FPURegister fs, Register rt) { GenInstrRegister(COP1, MFC1, rt, fs, f0); } void Assembler::mfhc1(FPURegister fs, Register rt) { GenInstrRegister(COP1, MFHC1, rt, fs, f0); } // Conversions. void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); } void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); } void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); } void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); } void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); } void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); } void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); } void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); } void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); } void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); } // Conditions. void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs, uint16_t cc) { ASSERT(is_uint3(cc)); ASSERT((fmt & ~(31 << kRsShift)) == 0); Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 | 3 << 4 | cond; emit(instr); } void Assembler::bc1f(int16_t offset, uint16_t cc) { ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); emit(instr); } void Assembler::bc1t(int16_t offset, uint16_t cc) { ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); emit(instr); } // Debugging. void Assembler::RecordJSReturn() { WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordComment(const char* msg) { if (FLAG_debug_code) { CheckBuffer(); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast(msg)); } } void Assembler::RecordPosition(int pos) { if (pos == RelocInfo::kNoPosition) return; ASSERT(pos >= 0); current_position_ = pos; } void Assembler::RecordStatementPosition(int pos) { if (pos == RelocInfo::kNoPosition) return; ASSERT(pos >= 0); current_statement_position_ = pos; } bool Assembler::WriteRecordedPositions() { bool written = false; // Write the statement position if it is different from what was written last // time. if (current_statement_position_ != written_statement_position_) { CheckBuffer(); RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); written_statement_position_ = current_statement_position_; written = true; } // Write the position if it is different from what was written last time and // also different from the written statement position. if (current_position_ != written_position_ && current_position_ != written_statement_position_) { CheckBuffer(); RecordRelocInfo(RelocInfo::POSITION, current_position_); written_position_ = current_position_; written = true; } // Return whether something was written. return written; } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // the new buffer if (buffer_size_ < 4*KB) { desc.buffer_size = 4*KB; } else if (buffer_size_ < 1*MB) { desc.buffer_size = 2*buffer_size_; } else { desc.buffer_size = buffer_size_ + 1*MB; } CHECK_GT(desc.buffer_size, 0); // no overflow // Setup new buffer. desc.buffer = NewArray(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); // Copy the data. int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); memmove(desc.buffer, buffer_, desc.instr_size); memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // On ia32 and ARM pc relative addressing is used, and we thus need to apply a // shift by pc_delta. But on MIPS the target address it directly loaded, so // we do not need to relocate here. ASSERT(!overflow()); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { // Adjust code for new modes. ASSERT(RelocInfo::IsJSReturn(rmode) || RelocInfo::IsComment(rmode) || RelocInfo::IsPosition(rmode)); // These modes do not need an entry in the constant pool. } if (rinfo.rmode() != RelocInfo::NONE) { // Don't record external references unless the heap will be serialized. if (rmode == RelocInfo::EXTERNAL_REFERENCE && !Serializer::enabled() && !FLAG_debug_code) { return; } ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here reloc_info_writer.Write(&rinfo); } } Address Assembler::target_address_at(Address pc) { Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); // Check we have 2 instructions generated by li. ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI || (instr2 & kOpcodeMask) == ORI || (instr2 & kOpcodeMask) == LUI))); // Interpret these 2 instructions. if (instr1 == nopInstr) { if ((instr2 & kOpcodeMask) == ADDI) { return reinterpret_cast
(((instr2 & kImm16Mask) << 16) >> 16); } else if ((instr2 & kOpcodeMask) == ORI) { return reinterpret_cast
(instr2 & kImm16Mask); } else if ((instr2 & kOpcodeMask) == LUI) { return reinterpret_cast
((instr2 & kImm16Mask) << 16); } } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { // 32 bits value. return reinterpret_cast
( (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); } // We should never get here. UNREACHABLE(); return (Address)0x0; } void Assembler::set_target_address_at(Address pc, Address target) { // On MIPS we need to patch the code to generate. // First check we have a li. Instr instr2 = instr_at(pc + kInstrSize); #ifdef DEBUG Instr instr1 = instr_at(pc); // Check we have indeed the result from a li with MustUseAt true. CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || (instr2 & kOpcodeMask)== ORI || (instr2 & kOpcodeMask)== LUI))); #endif uint32_t rt_code = (instr2 & kRtFieldMask); uint32_t* p = reinterpret_cast(pc); uint32_t itarget = reinterpret_cast(target); if (is_int16(itarget)) { // nop // addiu rt zero_reg j *p = nopInstr; *(p+1) = ADDIU | rt_code | (itarget & LOMask); } else if (!(itarget & HIMask)) { // nop // ori rt zero_reg j *p = nopInstr; *(p+1) = ORI | rt_code | (itarget & LOMask); } else if (!(itarget & LOMask)) { // nop // lui rt (HIMask & itarget)>>16 *p = nopInstr; *(p+1) = LUI | rt_code | ((itarget & HIMask)>>16); } else { // lui rt (HIMask & itarget)>>16 // ori rt rt, (LOMask & itarget) *p = LUI | rt_code | ((itarget & HIMask)>>16); *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & LOMask); } CPU::FlushICache(pc, 2 * sizeof(int32_t)); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS