# frozen_string_literal: true require 'lbfgsb' require 'rumale/base/classifier' require 'rumale/probabilistic_output' require 'rumale/validation' require_relative 'base_estimator' module Rumale module LinearModel # SVC is a class that implements Support Vector Classifier with the squared hinge loss. # For multiclass classification problem, it uses one-vs-the-rest strategy. # # @note # Rumale::SVM provides linear support vector classifier based on LIBLINEAR. # If you prefer execution speed, you should use Rumale::SVM::LinearSVC. # https://github.com/yoshoku/rumale-svm # # @example # require 'rumale/linear_model/svc' # # estimator = # Rumale::LinearModel::SVC.new(reg_param: 1.0) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) class SVC < Rumale::LinearModel::BaseEstimator include Rumale::Base::Classifier # Return the class labels. # @return [Numo::Int32] (shape: [n_classes]) attr_reader :classes # Create a new linear classifier with Support Vector Machine with the squared hinge loss. # # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # @param tol [Float] The tolerance of loss for terminating optimization. # @param probability [Boolean] The flag indicating whether to perform probability estimation. # @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel. # If nil is given, the methods do not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # 'iterate.dat' file is generated by lbfgsb.rb. def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, probability: false, n_jobs: nil, verbose: false) super() @params = { reg_param: reg_param, fit_bias: fit_bias, bias_scale: bias_scale, max_iter: max_iter, tol: tol, probability: probability, n_jobs: n_jobs, verbose: verbose } end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [SVC] The learned classifier itself. def fit(x, y) x = Rumale::Validation.check_convert_sample_array(x) y = Rumale::Validation.check_convert_label_array(y) Rumale::Validation.check_sample_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] x = expand_feature(x) if fit_bias? if multiclass_problem? n_classes = @classes.size n_features = x.shape[1] n_features -= 1 if fit_bias? @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) @prob_param = Numo::DFloat.zeros(n_classes, 2) models = if enable_parallel? parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end else Array.new(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end end models.each_with_index { |model, n| @weight_vec[n, true], @bias_term[n], @prob_param[n, true] = model } else negative_label = @classes[0] bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term, @prob_param = partial_fit(x, bin_y) end self end # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) x = Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) x = Rumale::Validation.check_convert_sample_array(x) n_samples = x.shape[0] predicted = if multiclass_problem? decision_values = decision_function(x) if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end else decision_values = decision_function(x).ge(0.0).to_a Array.new(n_samples) { |n| @classes[decision_values[n]] } end Numo::Int32.asarray(predicted) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) x = Rumale::Validation.check_convert_sample_array(x) if multiclass_problem? probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) (probs.transpose / probs.sum(axis: 1)).transpose.dup else n_samples = x.shape[0] probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end end private def partial_fit(base_x, bin_y) fnc = proc do |w, x, y, reg_param| n_samples = x.shape[0] z = x.dot(w) t = 1 - y * z loss = 0.5 * reg_param * w.dot(w) + (x.class.maximum(0, t)**2).sum.fdiv(n_samples) indices = t.gt(0) grad = reg_param * w if indices.count.positive? sx = x[indices, true] sy = y[indices] grad += 2.fdiv(n_samples) * sx.transpose.dot((sx.dot(w) - sy)) end [loss, grad] end n_features = base_x.shape[1] w_init = Numo::DFloat.zeros(n_features) res = Lbfgsb.minimize( fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]], maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1 ) prb = @params[:probability] ? Rumale::ProbabilisticOutput.fit_sigmoid(base_x.dot(res[:x]), bin_y) : Numo::DFloat[1, 0] w, b = split_weight(res[:x]) [w, b, prb] end def multiclass_problem? @classes.size > 2 end end end end