/* cocos2d for iPhone * http://www.cocos2d-iphone.org * * Copyright (c) 2007 Scott Lembcke * * Copyright (c) 2010 Lam Pham * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* * Some of the functions were based on Chipmunk's cpVect.h. */ /** @file CGPoint extensions based on Chipmunk's cpVect file. These extensions work both with CGPoint and cpVect. The "ccp" prefix means: "CoCos2d Point" Examples: - ccpAdd( ccp(1,1), ccp(2,2) ); // preferred cocos2d way - ccpAdd( CGPointMake(1,1), CGPointMake(2,2) ); // also ok but more verbose - cpvadd( cpv(1,1), cpv(2,2) ); // way of the chipmunk - ccpAdd( cpv(1,1), cpv(2,2) ); // mixing chipmunk and cocos2d (avoid) - cpvadd( CGPointMake(1,1), CGPointMake(2,2) ); // mixing chipmunk and CG (avoid) */ #import "ccMacros.h" #ifdef __CC_PLATFORM_IOS #import #elif defined(__CC_PLATFORM_MAC) #import #endif #import #import #ifdef __cplusplus extern "C" { #endif /** Helper macro that creates a CGPoint @return CGPoint @since v0.7.2 */ #define ccp(__X__,__Y__) CGPointMake(__X__,__Y__) /** Returns opposite of point. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpNeg(const CGPoint v) { return ccp(-v.x, -v.y); } /** Calculates sum of two points. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpAdd(const CGPoint v1, const CGPoint v2) { return ccp(v1.x + v2.x, v1.y + v2.y); } /** Calculates difference of two points. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpSub(const CGPoint v1, const CGPoint v2) { return ccp(v1.x - v2.x, v1.y - v2.y); } /** Returns point multiplied by given factor. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpMult(const CGPoint v, const CGFloat s) { return ccp(v.x*s, v.y*s); } /** Calculates midpoint between two points. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpMidpoint(const CGPoint v1, const CGPoint v2) { return ccpMult(ccpAdd(v1, v2), 0.5f); } /** Calculates dot product of two points. @return CGFloat @since v0.7.2 */ static inline CGFloat ccpDot(const CGPoint v1, const CGPoint v2) { return v1.x*v2.x + v1.y*v2.y; } /** Calculates cross product of two points. @return CGFloat @since v0.7.2 */ static inline CGFloat ccpCross(const CGPoint v1, const CGPoint v2) { return v1.x*v2.y - v1.y*v2.x; } /** Calculates perpendicular of v, rotated 90 degrees counter-clockwise -- cross(v, perp(v)) >= 0 @return CGPoint @since v0.7.2 */ static inline CGPoint ccpPerp(const CGPoint v) { return ccp(-v.y, v.x); } /** Calculates perpendicular of v, rotated 90 degrees clockwise -- cross(v, rperp(v)) <= 0 @return CGPoint @since v0.7.2 */ static inline CGPoint ccpRPerp(const CGPoint v) { return ccp(v.y, -v.x); } /** Calculates the projection of v1 over v2. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpProject(const CGPoint v1, const CGPoint v2) { return ccpMult(v2, ccpDot(v1, v2)/ccpDot(v2, v2)); } /** Rotates two points. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpRotate(const CGPoint v1, const CGPoint v2) { return ccp(v1.x*v2.x - v1.y*v2.y, v1.x*v2.y + v1.y*v2.x); } /** Unrotates two points. @return CGPoint @since v0.7.2 */ static inline CGPoint ccpUnrotate(const CGPoint v1, const CGPoint v2) { return ccp(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y); } /** Calculates the square length of a CGPoint (not calling sqrt() ) @return CGFloat @since v0.7.2 */ static inline CGFloat ccpLengthSQ(const CGPoint v) { return ccpDot(v, v); } /** Calculates the square distance between two points (not calling sqrt() ) @return CGFloat @since v1.1 */ static inline CGFloat ccpDistanceSQ(const CGPoint p1, const CGPoint p2) { return ccpLengthSQ(ccpSub(p1, p2)); } /** Calculates distance between point an origin @return CGFloat @since v0.7.2 */ CGFloat ccpLength(const CGPoint v); /** Calculates the distance between two points @return CGFloat @since v0.7.2 */ CGFloat ccpDistance(const CGPoint v1, const CGPoint v2); /** Returns point multiplied to a length of 1. @return CGPoint @since v0.7.2 */ CGPoint ccpNormalize(const CGPoint v); /** Converts radians to a normalized vector. @return CGPoint @since v0.7.2 */ CGPoint ccpForAngle(const CGFloat a); /** Converts a vector to radians. @return CGFloat @since v0.7.2 */ CGFloat ccpToAngle(const CGPoint v); /** Clamp a value between from and to. @since v0.99.1 */ float clampf(float value, float min_inclusive, float max_inclusive); /** Clamp a point between from and to. @since v0.99.1 */ CGPoint ccpClamp(CGPoint p, CGPoint from, CGPoint to); /** Quickly convert CGSize to a CGPoint @since v0.99.1 */ CGPoint ccpFromSize(CGSize s); /** Run a math operation function on each point component * absf, fllorf, ceilf, roundf * any function that has the signature: float func(float); * For example: let's try to take the floor of x,y * ccpCompOp(p,floorf); @since v0.99.1 */ CGPoint ccpCompOp(CGPoint p, float (*opFunc)(float)); /** Linear Interpolation between two points a and b @returns alpha == 0 ? a alpha == 1 ? b otherwise a value between a..b @since v0.99.1 */ CGPoint ccpLerp(CGPoint a, CGPoint b, float alpha); /** @returns if points have fuzzy equality which means equal with some degree of variance. @since v0.99.1 */ BOOL ccpFuzzyEqual(CGPoint a, CGPoint b, float variance); /** Multiplies a nd b components, a.x*b.x, a.y*b.y @returns a component-wise multiplication @since v0.99.1 */ CGPoint ccpCompMult(CGPoint a, CGPoint b); /** @returns the signed angle in radians between two vector directions @since v0.99.1 */ float ccpAngleSigned(CGPoint a, CGPoint b); /** @returns the angle in radians between two vector directions @since v0.99.1 */ float ccpAngle(CGPoint a, CGPoint b); /** Rotates a point counter clockwise by the angle around a pivot @param v is the point to rotate @param pivot is the pivot, naturally @param angle is the angle of rotation cw in radians @returns the rotated point @since v0.99.1 */ CGPoint ccpRotateByAngle(CGPoint v, CGPoint pivot, float angle); /** A general line-line intersection test @param p1 is the startpoint for the first line P1 = (p1 - p2) @param p2 is the endpoint for the first line P1 = (p1 - p2) @param p3 is the startpoint for the second line P2 = (p3 - p4) @param p4 is the endpoint for the second line P2 = (p3 - p4) @param s is the range for a hitpoint in P1 (pa = p1 + s*(p2 - p1)) @param t is the range for a hitpoint in P3 (pa = p2 + t*(p4 - p3)) @return bool indicating successful intersection of a line note that to truly test intersection for segments we have to make sure that s & t lie within [0..1] and for rays, make sure s & t > 0 the hit point is p3 + t * (p4 - p3); the hit point also is p1 + s * (p2 - p1); @since v0.99.1 */ BOOL ccpLineIntersect(CGPoint p1, CGPoint p2, CGPoint p3, CGPoint p4, float *s, float *t); /* ccpSegmentIntersect returns YES if Segment A-B intersects with segment C-D @since v1.0.0 */ BOOL ccpSegmentIntersect(CGPoint A, CGPoint B, CGPoint C, CGPoint D); /* ccpIntersectPoint returns the intersection point of line A-B, C-D @since v1.0.0 */ CGPoint ccpIntersectPoint(CGPoint A, CGPoint B, CGPoint C, CGPoint D); #ifdef __cplusplus } #endif