# frozen_string_literal: true require 'rumale/base/regressor' require 'rumale/validation' require 'rumale/linear_model/base_sgd' module Rumale module LinearModel # SVR is a class that implements Support Vector Regressor # with stochastic gradient descent optimization. # # @note # Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM. # If you prefer execution speed, you should use Rumale::SVM::LinearSVR. # https://github.com/yoshoku/rumale-svm # # @example # require 'rumale/linear_model/svr' # # estimator = # Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, random_seed: 1) # estimator.fit(training_samples, traininig_target_values) # results = estimator.predict(testing_samples) # # *Reference* # - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. # - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009. # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010. class SVR < BaseSGD include ::Rumale::Base::Regressor # Return the weight vector for SVR. # @return [Numo::DFloat] (shape: [n_outputs, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for SVR. # @return [Numo::DFloat] (shape: [n_outputs]) attr_reader :bias_term # Return the random generator for performing random sampling. # @return [Random] attr_reader :rng # Create a new regressor with Support Vector Machine by the SGD optimization. # # @param learning_rate [Float] The initial value of learning rate. # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t). # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds. # If nil is given, the decay sets to 'reg_param * learning_rate'. # @param momentum [Float] The momentum factor. # @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet'). # @param l1_ratio [Float] The elastic-net type regularization mixing parameter. # If penalty set to 'l2' or 'l1', this parameter is ignored. # If l1_ratio = 1, the regularization is similar to Lasso. # If l1_ratio = 0, the regularization is similar to Ridge. # If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2. # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param epsilon [Float] The margin of tolerance. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # @param batch_size [Integer] The size of the mini batches. # @param tol [Float] The tolerance of loss for terminating optimization. # @param n_jobs [Integer] The number of jobs for running the fit method in parallel. # If nil is given, the method does not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9, penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 50, tol: 1e-4, n_jobs: nil, verbose: false, random_seed: nil) super() @params.merge!(method(:initialize).parameters.to_h { |_t, arg| [arg, binding.local_variable_get(arg)] }) @params[:decay] ||= @params[:reg_param] * @params[:learning_rate] @params[:random_seed] ||= srand @rng = Random.new(@params[:random_seed]) @penalty_type = @params[:penalty] @loss_func = ::Rumale::LinearModel::Loss::EpsilonInsensitive.new(epsilon: @params[:epsilon]) end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [SVR] The learned regressor itself. def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_target_value_array(y) ::Rumale::Validation.check_sample_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] n_features = x.shape[1] if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) if enable_parallel? models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) } n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } else n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } end else @weight_vec, @bias_term = partial_fit(x, y) end self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end end end end