module EasyML class Trainer # include GlueGun::DSL # include EasyML::Logging # define_attr :verbose, default: false # define_attr :root_dir do |root_dir| # File.join(root_dir, "trainer") # end # define_config :dataset do |config| # config.define_option :default do |option| # option.set_class EasyML::Data::Dataset # option.define_attr :root_dir # option.define_attr :target # option.define_attr :batch_size # end # end # define_config :model do |config| # config.define_option :default do |option| # option.set_class EasyML::Model # option.define_attr :root_dir # option.define_attr :name # option.define_attr :hyperparameters # end # end # def train # log_info("Starting training process") if verbose # dataset.refresh! # log_info("Fitting model") if verbose # dataset.train(split_ys: true) do |xs, ys| # model.fit(xs, ys) # end # log_info("Saving model") if verbose # model.save # log_info("Training completed") if verbose # end # def evaluate # log_info("Starting evaluation process") if verbose # results = {} # %i[train test valid].each do |split| # log_info("Evaluating on #{split} set") if verbose # predictions = [] # actuals = [] # dataset.send(split, split_ys: true) do |xs, ys| # batch_predictions = model.predict(xs) # predictions.concat(batch_predictions.to_a) # actuals.concat(ys.to_a) # end # results[split] = calculate_metrics(predictions, actuals) # end # log_info("Evaluation completed") if verbose # results # end # private # def calculate_metrics(predictions, actuals) # # Implement your metric calculations here # # This is a placeholder and should be replaced with actual metric calculations # { # mse: mean_squared_error(predictions, actuals), # mae: mean_absolute_error(predictions, actuals), # r2: r_squared(predictions, actuals) # } # end # def mean_squared_error(predictions, actuals) # # Implement MSE calculation # end # def mean_absolute_error(predictions, actuals) # # Implement MAE calculation # end # def r_squared(predictions, actuals) # # Implement R-squared calculation # end end end