Sha256: 16c8f3b6388adc84a5595edddbe88143bff8423abe88cc4d815beeb8a17b779e
Contents?: true
Size: 1.61 KB
Versions: 1
Compression:
Stored size: 1.61 KB
Contents
lib = File.expand_path('lib', __dir__) $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib) require 'svmkit/version' Gem::Specification.new do |spec| spec.name = 'svmkit' spec.version = SVMKit::VERSION spec.authors = ['yoshoku'] spec.email = ['yoshoku@outlook.com'] spec.summary = <<MSG SVMKit is a machine learninig library in Ruby. SVMKit provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. MSG spec.description = <<MSG SVMKit is a machine learninig library in Ruby. SVMKit provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. SVMKit currently supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Random Forest, K-nearest neighbor algorithm, K-Means, DBSCAN, Principal Component Analysis, Non-negative Matrix Factorization and cross-validation. MSG spec.homepage = 'https://github.com/yoshoku/svmkit' spec.license = 'BSD-2-Clause' spec.files = `git ls-files -z`.split("\x0").reject do |f| f.match(%r{^(test|spec|features)/}) end spec.bindir = 'exe' spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) } spec.require_paths = ['lib'] spec.required_ruby_version = '>= 2.1' spec.add_runtime_dependency 'numo-narray', '>= 0.9.1' spec.add_development_dependency 'bundler', '~> 1.16' spec.add_development_dependency 'coveralls', '~> 0.8' spec.add_development_dependency 'rake', '~> 12.0' spec.add_development_dependency 'rspec', '~> 3.0' end
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
svmkit-0.7.0 | svmkit.gemspec |