// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "x64/lithium-codegen-x64.h" #include "code-stubs.h" #include "stub-cache.h" namespace v8 { namespace internal { // When invoking builtins, we need to record the safepoint in the middle of // the invoke instruction sequence generated by the macro assembler. class SafepointGenerator : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, int deoptimization_index) : codegen_(codegen), pointers_(pointers), deoptimization_index_(deoptimization_index) { } virtual ~SafepointGenerator() { } virtual void BeforeCall(int call_size) const { ASSERT(call_size >= 0); // Ensure that we have enough space after the previous safepoint position // for the jump generated there. int call_end = codegen_->masm()->pc_offset() + call_size; int prev_jump_end = codegen_->LastSafepointEnd() + kMinSafepointSize; if (call_end < prev_jump_end) { int padding_size = prev_jump_end - call_end; STATIC_ASSERT(kMinSafepointSize <= 9); // One multibyte nop is enough. codegen_->masm()->nop(padding_size); } } virtual void AfterCall() const { codegen_->RecordSafepoint(pointers_, deoptimization_index_); } private: static const int kMinSafepointSize = MacroAssembler::kShortCallInstructionLength; LCodeGen* codegen_; LPointerMap* pointers_; int deoptimization_index_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { HPhase phase("Code generation", chunk()); ASSERT(is_unused()); status_ = GENERATING; return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle code) { ASSERT(is_done()); code->set_stack_slots(GetStackSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code); } void LCodeGen::Abort(const char* format, ...) { if (FLAG_trace_bailout) { SmartPointer name(info()->shared_info()->DebugName()->ToCString()); PrintF("Aborting LCodeGen in @\"%s\": ", *name); va_list arguments; va_start(arguments, format); OS::VPrint(format, arguments); va_end(arguments); PrintF("\n"); } status_ = ABORTED; } void LCodeGen::Comment(const char* format, ...) { if (!FLAG_code_comments) return; char buffer[4 * KB]; StringBuilder builder(buffer, ARRAY_SIZE(buffer)); va_list arguments; va_start(arguments, format); builder.AddFormattedList(format, arguments); va_end(arguments); // Copy the string before recording it in the assembler to avoid // issues when the stack allocated buffer goes out of scope. int length = builder.position(); Vector copy = Vector::New(length + 1); memcpy(copy.start(), builder.Finalize(), copy.length()); masm()->RecordComment(copy.start()); } bool LCodeGen::GeneratePrologue() { ASSERT(is_generating()); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif // Strict mode functions need to replace the receiver with undefined // when called as functions (without an explicit receiver // object). rcx is zero for method calls and non-zero for function // calls. if (info_->is_strict_mode()) { Label ok; __ testq(rcx, rcx); __ j(zero, &ok, Label::kNear); // +1 for return address. int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ movq(Operand(rsp, receiver_offset), kScratchRegister); __ bind(&ok); } __ push(rbp); // Caller's frame pointer. __ movq(rbp, rsp); __ push(rsi); // Callee's context. __ push(rdi); // Callee's JS function. // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ Set(rax, slots); __ movq(kScratchRegister, kSlotsZapValue, RelocInfo::NONE); Label loop; __ bind(&loop); __ push(kScratchRegister); __ decl(rax); __ j(not_zero, &loop); } else { __ subq(rsp, Immediate(slots * kPointerSize)); #ifdef _MSC_VER // On windows, you may not access the stack more than one page below // the most recently mapped page. To make the allocated area randomly // accessible, we write to each page in turn (the value is irrelevant). const int kPageSize = 4 * KB; for (int offset = slots * kPointerSize - kPageSize; offset > 0; offset -= kPageSize) { __ movq(Operand(rsp, offset), rax); } #endif } } // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment(";;; Allocate local context"); // Argument to NewContext is the function, which is still in rdi. __ push(rdi); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewContext, 1); } RecordSafepoint(Safepoint::kNoDeoptimizationIndex); // Context is returned in both rax and rsi. It replaces the context // passed to us. It's saved in the stack and kept live in rsi. __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Slot* slot = scope()->parameter(i)->AsSlot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movq(rax, Operand(rbp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(slot->index()); __ movq(Operand(rsi, context_offset), rax); // Update the write barrier. This clobbers all involved // registers, so we have use a third register to avoid // clobbering rsi. __ movq(rcx, rsi); __ RecordWrite(rcx, context_offset, rax, rbx); } } Comment(";;; End allocate local context"); } // Trace the call. if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } return !is_aborted(); } bool LCodeGen::GenerateBody() { ASSERT(is_generating()); bool emit_instructions = true; for (current_instruction_ = 0; !is_aborted() && current_instruction_ < instructions_->length(); current_instruction_++) { LInstruction* instr = instructions_->at(current_instruction_); if (instr->IsLabel()) { LLabel* label = LLabel::cast(instr); emit_instructions = !label->HasReplacement(); } if (emit_instructions) { Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); instr->CompileToNative(this); } } return !is_aborted(); } LInstruction* LCodeGen::GetNextInstruction() { if (current_instruction_ < instructions_->length() - 1) { return instructions_->at(current_instruction_ + 1); } else { return NULL; } } bool LCodeGen::GenerateJumpTable() { for (int i = 0; i < jump_table_.length(); i++) { __ bind(&jump_table_[i].label); __ Jump(jump_table_[i].address, RelocInfo::RUNTIME_ENTRY); } return !is_aborted(); } bool LCodeGen::GenerateDeferredCode() { ASSERT(is_generating()); for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; __ bind(code->entry()); code->Generate(); __ jmp(code->exit()); } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { ASSERT(is_done()); // Ensure that there is space at the end of the code to write a number // of jump instructions, as well as to afford writing a call near the end // of the code. // The jumps are used when there isn't room in the code stream to write // a long call instruction. Instead it writes a shorter call to a // jump instruction in the same code object. // The calls are used when lazy deoptimizing a function and calls to a // deoptimization function. int short_deopts = safepoints_.CountShortDeoptimizationIntervals( static_cast(MacroAssembler::kJumpInstructionLength)); int byte_count = (short_deopts) * MacroAssembler::kJumpInstructionLength; while (byte_count-- > 0) { __ int3(); } safepoints_.Emit(masm(), GetStackSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::FromAllocationIndex(index); } XMMRegister LCodeGen::ToDoubleRegister(int index) const { return XMMRegister::FromAllocationIndex(index); } Register LCodeGen::ToRegister(LOperand* op) const { ASSERT(op->IsRegister()); return ToRegister(op->index()); } XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { ASSERT(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { return op->IsConstantOperand() && chunk_->LookupLiteralRepresentation(op).IsInteger32(); } bool LCodeGen::IsTaggedConstant(LConstantOperand* op) const { return op->IsConstantOperand() && chunk_->LookupLiteralRepresentation(op).IsTagged(); } int LCodeGen::ToInteger32(LConstantOperand* op) const { Handle value = chunk_->LookupLiteral(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); ASSERT(static_cast(static_cast(value->Number())) == value->Number()); return static_cast(value->Number()); } Handle LCodeGen::ToHandle(LConstantOperand* op) const { Handle literal = chunk_->LookupLiteral(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged()); return literal; } Operand LCodeGen::ToOperand(LOperand* op) const { // Does not handle registers. In X64 assembler, plain registers are not // representable as an Operand. ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); int index = op->index(); if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, and // context in the fixed part of the frame. return Operand(rbp, -(index + 3) * kPointerSize); } else { // Incoming parameter. Skip the return address. return Operand(rbp, -(index - 1) * kPointerSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->values()->length(); // The output frame height does not include the parameters. int height = translation_size - environment->parameter_count(); WriteTranslation(environment->outer(), translation); int closure_id = DefineDeoptimizationLiteral(environment->closure()); translation->BeginFrame(environment->ast_id(), closure_id, height); for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); // spilled_registers_ and spilled_double_registers_ are either // both NULL or both set. if (environment->spilled_registers() != NULL && value != NULL) { if (value->IsRegister() && environment->spilled_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation(translation, environment->spilled_registers()[value->index()], environment->HasTaggedValueAt(i)); } else if ( value->IsDoubleRegister() && environment->spilled_double_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation( translation, environment->spilled_double_registers()[value->index()], false); } } AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); } } void LCodeGen::AddToTranslation(Translation* translation, LOperand* op, bool is_tagged) { if (op == NULL) { // TODO(twuerthinger): Introduce marker operands to indicate that this value // is not present and must be reconstructed from the deoptimizer. Currently // this is only used for the arguments object. translation->StoreArgumentsObject(); } else if (op->IsStackSlot()) { if (is_tagged) { translation->StoreStackSlot(op->index()); } else { translation->StoreInt32StackSlot(op->index()); } } else if (op->IsDoubleStackSlot()) { translation->StoreDoubleStackSlot(op->index()); } else if (op->IsArgument()) { ASSERT(is_tagged); int src_index = GetStackSlotCount() + op->index(); translation->StoreStackSlot(src_index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { XMMRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { Handle literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(literal); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode, int argc) { ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ call(code, mode); RegisterLazyDeoptimization(instr, safepoint_mode, argc); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0); } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr) { ASSERT(instr != NULL); ASSERT(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ CallRuntime(function, num_arguments); RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT, 0); } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr) { __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex); } void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr, SafepointMode safepoint_mode, int argc) { // Create the environment to bailout to. If the call has side effects // execution has to continue after the call otherwise execution can continue // from a previous bailout point repeating the call. LEnvironment* deoptimization_environment; if (instr->HasDeoptimizationEnvironment()) { deoptimization_environment = instr->deoptimization_environment(); } else { deoptimization_environment = instr->environment(); } RegisterEnvironmentForDeoptimization(deoptimization_environment); if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { ASSERT(argc == 0); RecordSafepoint(instr->pointer_map(), deoptimization_environment->deoptimization_index()); } else { ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS); RecordSafepointWithRegisters( instr->pointer_map(), argc, deoptimization_environment->deoptimization_index()); } } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) { if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; } Translation translation(&translations_, frame_count); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); environment->Register(deoptimization_index, translation.index()); deoptimizations_.Add(environment); } } void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) { RegisterEnvironmentForDeoptimization(environment); ASSERT(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); ASSERT(entry != NULL); if (entry == NULL) { Abort("bailout was not prepared"); return; } if (cc == no_condition) { __ Jump(entry, RelocInfo::RUNTIME_ENTRY); } else { // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (jump_table_.is_empty() || jump_table_.last().address != entry) { jump_table_.Add(JumpTableEntry(entry)); } __ j(cc, &jump_table_.last().label); } } void LCodeGen::PopulateDeoptimizationData(Handle code) { int length = deoptimizations_.length(); if (length == 0) return; ASSERT(FLAG_deopt); Handle data = factory()->NewDeoptimizationInputData(length, TENURED); Handle translations = translations_.CreateByteArray(); data->SetTranslationByteArray(*translations); data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); Handle literals = factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); for (int i = 0; i < deoptimization_literals_.length(); i++) { literals->set(i, *deoptimization_literals_[i]); } data->SetLiteralArray(*literals); data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); // Populate the deoptimization entries. for (int i = 0; i < length; i++) { LEnvironment* env = deoptimizations_[i]; data->SetAstId(i, Smi::FromInt(env->ast_id())); data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); data->SetArgumentsStackHeight(i, Smi::FromInt(env->arguments_stack_height())); } code->set_deoptimization_data(*data); } int LCodeGen::DefineDeoptimizationLiteral(Handle literal) { int result = deoptimization_literals_.length(); for (int i = 0; i < deoptimization_literals_.length(); ++i) { if (deoptimization_literals_[i].is_identical_to(literal)) return i; } deoptimization_literals_.Add(literal); return result; } void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { ASSERT(deoptimization_literals_.length() == 0); const ZoneList >* inlined_closures = chunk()->inlined_closures(); for (int i = 0, length = inlined_closures->length(); i < length; i++) { DefineDeoptimizationLiteral(inlined_closures->at(i)); } inlined_function_count_ = deoptimization_literals_.length(); } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, int deoptimization_index) { ASSERT(kind == expected_safepoint_kind_); const ZoneList* operands = pointers->operands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deoptimization_index); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer)); } } if (kind & Safepoint::kWithRegisters) { // Register rsi always contains a pointer to the context. safepoint.DefinePointerRegister(rsi); } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, int deoptimization_index) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index); } void LCodeGen::RecordSafepoint(int deoptimization_index) { LPointerMap empty_pointers(RelocInfo::kNoPosition); RecordSafepoint(&empty_pointers, deoptimization_index); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, int deoptimization_index) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deoptimization_index); } void LCodeGen::RecordPosition(int position) { if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return; masm()->positions_recorder()->RecordPosition(position); } void LCodeGen::DoLabel(LLabel* label) { if (label->is_loop_header()) { Comment(";;; B%d - LOOP entry", label->block_id()); } else { Comment(";;; B%d", label->block_id()); } __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } LInstruction* next = GetNextInstruction(); if (next != NULL && next->IsLazyBailout()) { int pc = masm()->pc_offset(); safepoints_.SetPcAfterGap(pc); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoCallStub(LCallStub* instr) { ASSERT(ToRegister(instr->result()).is(rax)); switch (instr->hydrogen()->major_key()) { case CodeStub::RegExpConstructResult: { RegExpConstructResultStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::RegExpExec: { RegExpExecStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::SubString: { SubStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::NumberToString: { NumberToStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringAdd: { StringAddStub stub(NO_STRING_ADD_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringCompare: { StringCompareStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::TranscendentalCache: { TranscendentalCacheStub stub(instr->transcendental_type(), TranscendentalCacheStub::TAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } default: UNREACHABLE(); } } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { // Nothing to do. } void LCodeGen::DoModI(LModI* instr) { if (instr->hydrogen()->HasPowerOf2Divisor()) { Register dividend = ToRegister(instr->InputAt(0)); int32_t divisor = HConstant::cast(instr->hydrogen()->right())->Integer32Value(); if (divisor < 0) divisor = -divisor; Label positive_dividend, done; __ testl(dividend, dividend); __ j(not_sign, &positive_dividend, Label::kNear); __ negl(dividend); __ andl(dividend, Immediate(divisor - 1)); __ negl(dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ j(not_zero, &done, Label::kNear); DeoptimizeIf(no_condition, instr->environment()); } __ bind(&positive_dividend); __ andl(dividend, Immediate(divisor - 1)); __ bind(&done); } else { Label done, remainder_eq_dividend, slow, do_subtraction, both_positive; Register left_reg = ToRegister(instr->InputAt(0)); Register right_reg = ToRegister(instr->InputAt(1)); Register result_reg = ToRegister(instr->result()); ASSERT(left_reg.is(rax)); ASSERT(result_reg.is(rdx)); ASSERT(!right_reg.is(rax)); ASSERT(!right_reg.is(rdx)); // Check for x % 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ testl(right_reg, right_reg); DeoptimizeIf(zero, instr->environment()); } __ testl(left_reg, left_reg); __ j(zero, &remainder_eq_dividend, Label::kNear); __ j(sign, &slow, Label::kNear); __ testl(right_reg, right_reg); __ j(not_sign, &both_positive, Label::kNear); // The sign of the divisor doesn't matter. __ neg(right_reg); __ bind(&both_positive); // If the dividend is smaller than the nonnegative // divisor, the dividend is the result. __ cmpl(left_reg, right_reg); __ j(less, &remainder_eq_dividend, Label::kNear); // Check if the divisor is a PowerOfTwo integer. Register scratch = ToRegister(instr->TempAt(0)); __ movl(scratch, right_reg); __ subl(scratch, Immediate(1)); __ testl(scratch, right_reg); __ j(not_zero, &do_subtraction, Label::kNear); __ andl(left_reg, scratch); __ jmp(&remainder_eq_dividend, Label::kNear); __ bind(&do_subtraction); const int kUnfolds = 3; // Try a few subtractions of the dividend. __ movl(scratch, left_reg); for (int i = 0; i < kUnfolds; i++) { // Reduce the dividend by the divisor. __ subl(left_reg, right_reg); // Check if the dividend is less than the divisor. __ cmpl(left_reg, right_reg); __ j(less, &remainder_eq_dividend, Label::kNear); } __ movl(left_reg, scratch); // Slow case, using idiv instruction. __ bind(&slow); // Sign extend eax to edx. // (We are using only the low 32 bits of the values.) __ cdq(); // Check for (0 % -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label positive_left; Label done; __ testl(left_reg, left_reg); __ j(not_sign, &positive_left, Label::kNear); __ idivl(right_reg); // Test the remainder for 0, because then the result would be -0. __ testl(result_reg, result_reg); __ j(not_zero, &done, Label::kNear); DeoptimizeIf(no_condition, instr->environment()); __ bind(&positive_left); __ idivl(right_reg); __ bind(&done); } else { __ idivl(right_reg); } __ jmp(&done, Label::kNear); __ bind(&remainder_eq_dividend); __ movl(result_reg, left_reg); __ bind(&done); } } void LCodeGen::DoDivI(LDivI* instr) { LOperand* right = instr->InputAt(1); ASSERT(ToRegister(instr->result()).is(rax)); ASSERT(ToRegister(instr->InputAt(0)).is(rax)); ASSERT(!ToRegister(instr->InputAt(1)).is(rax)); ASSERT(!ToRegister(instr->InputAt(1)).is(rdx)); Register left_reg = rax; // Check for x / 0. Register right_reg = ToRegister(right); if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { __ testl(right_reg, right_reg); DeoptimizeIf(zero, instr->environment()); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ testl(left_reg, left_reg); __ j(not_zero, &left_not_zero, Label::kNear); __ testl(right_reg, right_reg); DeoptimizeIf(sign, instr->environment()); __ bind(&left_not_zero); } // Check for (-kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { Label left_not_min_int; __ cmpl(left_reg, Immediate(kMinInt)); __ j(not_zero, &left_not_min_int, Label::kNear); __ cmpl(right_reg, Immediate(-1)); DeoptimizeIf(zero, instr->environment()); __ bind(&left_not_min_int); } // Sign extend to rdx. __ cdq(); __ idivl(right_reg); // Deoptimize if remainder is not 0. __ testl(rdx, rdx); DeoptimizeIf(not_zero, instr->environment()); } void LCodeGen::DoMulI(LMulI* instr) { Register left = ToRegister(instr->InputAt(0)); LOperand* right = instr->InputAt(1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ movl(kScratchRegister, left); } bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (right->IsConstantOperand()) { int right_value = ToInteger32(LConstantOperand::cast(right)); if (right_value == -1) { __ negl(left); } else if (right_value == 0) { __ xorl(left, left); } else if (right_value == 2) { __ addl(left, left); } else if (!can_overflow) { // If the multiplication is known to not overflow, we // can use operations that don't set the overflow flag // correctly. switch (right_value) { case 1: // Do nothing. break; case 3: __ leal(left, Operand(left, left, times_2, 0)); break; case 4: __ shll(left, Immediate(2)); break; case 5: __ leal(left, Operand(left, left, times_4, 0)); break; case 8: __ shll(left, Immediate(3)); break; case 9: __ leal(left, Operand(left, left, times_8, 0)); break; case 16: __ shll(left, Immediate(4)); break; default: __ imull(left, left, Immediate(right_value)); break; } } else { __ imull(left, left, Immediate(right_value)); } } else if (right->IsStackSlot()) { __ imull(left, ToOperand(right)); } else { __ imull(left, ToRegister(right)); } if (can_overflow) { DeoptimizeIf(overflow, instr->environment()); } if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bail out if the result is supposed to be negative zero. Label done; __ testl(left, left); __ j(not_zero, &done, Label::kNear); if (right->IsConstantOperand()) { if (ToInteger32(LConstantOperand::cast(right)) <= 0) { DeoptimizeIf(no_condition, instr->environment()); } } else if (right->IsStackSlot()) { __ or_(kScratchRegister, ToOperand(right)); DeoptimizeIf(sign, instr->environment()); } else { // Test the non-zero operand for negative sign. __ or_(kScratchRegister, ToRegister(right)); DeoptimizeIf(sign, instr->environment()); } __ bind(&done); } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); if (right->IsConstantOperand()) { int right_operand = ToInteger32(LConstantOperand::cast(right)); switch (instr->op()) { case Token::BIT_AND: __ andl(ToRegister(left), Immediate(right_operand)); break; case Token::BIT_OR: __ orl(ToRegister(left), Immediate(right_operand)); break; case Token::BIT_XOR: __ xorl(ToRegister(left), Immediate(right_operand)); break; default: UNREACHABLE(); break; } } else if (right->IsStackSlot()) { switch (instr->op()) { case Token::BIT_AND: __ andl(ToRegister(left), ToOperand(right)); break; case Token::BIT_OR: __ orl(ToRegister(left), ToOperand(right)); break; case Token::BIT_XOR: __ xorl(ToRegister(left), ToOperand(right)); break; default: UNREACHABLE(); break; } } else { ASSERT(right->IsRegister()); switch (instr->op()) { case Token::BIT_AND: __ andl(ToRegister(left), ToRegister(right)); break; case Token::BIT_OR: __ orl(ToRegister(left), ToRegister(right)); break; case Token::BIT_XOR: __ xorl(ToRegister(left), ToRegister(right)); break; default: UNREACHABLE(); break; } } } void LCodeGen::DoShiftI(LShiftI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); ASSERT(left->IsRegister()); if (right->IsRegister()) { ASSERT(ToRegister(right).is(rcx)); switch (instr->op()) { case Token::SAR: __ sarl_cl(ToRegister(left)); break; case Token::SHR: __ shrl_cl(ToRegister(left)); if (instr->can_deopt()) { __ testl(ToRegister(left), ToRegister(left)); DeoptimizeIf(negative, instr->environment()); } break; case Token::SHL: __ shll_cl(ToRegister(left)); break; default: UNREACHABLE(); break; } } else { int value = ToInteger32(LConstantOperand::cast(right)); uint8_t shift_count = static_cast(value & 0x1F); switch (instr->op()) { case Token::SAR: if (shift_count != 0) { __ sarl(ToRegister(left), Immediate(shift_count)); } break; case Token::SHR: if (shift_count == 0 && instr->can_deopt()) { __ testl(ToRegister(left), ToRegister(left)); DeoptimizeIf(negative, instr->environment()); } else { __ shrl(ToRegister(left), Immediate(shift_count)); } break; case Token::SHL: if (shift_count != 0) { __ shll(ToRegister(left), Immediate(shift_count)); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); if (right->IsConstantOperand()) { __ subl(ToRegister(left), Immediate(ToInteger32(LConstantOperand::cast(right)))); } else if (right->IsRegister()) { __ subl(ToRegister(left), ToRegister(right)); } else { __ subl(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } } void LCodeGen::DoConstantI(LConstantI* instr) { ASSERT(instr->result()->IsRegister()); __ Set(ToRegister(instr->result()), instr->value()); } void LCodeGen::DoConstantD(LConstantD* instr) { ASSERT(instr->result()->IsDoubleRegister()); XMMRegister res = ToDoubleRegister(instr->result()); double v = instr->value(); uint64_t int_val = BitCast(v); // Use xor to produce +0.0 in a fast and compact way, but avoid to // do so if the constant is -0.0. if (int_val == 0) { __ xorps(res, res); } else { Register tmp = ToRegister(instr->TempAt(0)); __ Set(tmp, int_val); __ movq(res, tmp); } } void LCodeGen::DoConstantT(LConstantT* instr) { ASSERT(instr->result()->IsRegister()); __ Move(ToRegister(instr->result()), instr->value()); } void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ movq(result, FieldOperand(array, JSArray::kLengthOffset)); } void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ movq(result, FieldOperand(array, FixedArray::kLengthOffset)); } void LCodeGen::DoExternalArrayLength(LExternalArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ movl(result, FieldOperand(array, ExternalPixelArray::kLengthOffset)); } void LCodeGen::DoValueOf(LValueOf* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); ASSERT(input.is(result)); Label done; // If the object is a smi return the object. __ JumpIfSmi(input, &done, Label::kNear); // If the object is not a value type, return the object. __ CmpObjectType(input, JS_VALUE_TYPE, kScratchRegister); __ j(not_equal, &done, Label::kNear); __ movq(result, FieldOperand(input, JSValue::kValueOffset)); __ bind(&done); } void LCodeGen::DoBitNotI(LBitNotI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->Equals(instr->result())); __ not_(ToRegister(input)); } void LCodeGen::DoThrow(LThrow* instr) { __ push(ToRegister(instr->InputAt(0))); CallRuntime(Runtime::kThrow, 1, instr); if (FLAG_debug_code) { Comment("Unreachable code."); __ int3(); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); ASSERT(left->Equals(instr->result())); if (right->IsConstantOperand()) { __ addl(ToRegister(left), Immediate(ToInteger32(LConstantOperand::cast(right)))); } else if (right->IsRegister()) { __ addl(ToRegister(left), ToRegister(right)); } else { __ addl(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr->environment()); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { XMMRegister left = ToDoubleRegister(instr->InputAt(0)); XMMRegister right = ToDoubleRegister(instr->InputAt(1)); XMMRegister result = ToDoubleRegister(instr->result()); // All operations except MOD are computed in-place. ASSERT(instr->op() == Token::MOD || left.is(result)); switch (instr->op()) { case Token::ADD: __ addsd(left, right); break; case Token::SUB: __ subsd(left, right); break; case Token::MUL: __ mulsd(left, right); break; case Token::DIV: __ divsd(left, right); break; case Token::MOD: __ PrepareCallCFunction(2); __ movaps(xmm0, left); ASSERT(right.is(xmm1)); __ CallCFunction( ExternalReference::double_fp_operation(Token::MOD, isolate()), 2); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ movaps(result, xmm0); break; default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(rdx)); ASSERT(ToRegister(instr->InputAt(1)).is(rax)); ASSERT(ToRegister(instr->result()).is(rax)); BinaryOpStub stub(instr->op(), NO_OVERWRITE); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } int LCodeGen::GetNextEmittedBlock(int block) { for (int i = block + 1; i < graph()->blocks()->length(); ++i) { LLabel* label = chunk_->GetLabel(i); if (!label->HasReplacement()) return i; } return -1; } void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) { int next_block = GetNextEmittedBlock(current_block_); right_block = chunk_->LookupDestination(right_block); left_block = chunk_->LookupDestination(left_block); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ j(cc, chunk_->GetAssemblyLabel(left_block)); } else { __ j(cc, chunk_->GetAssemblyLabel(left_block)); if (cc != always) { __ jmp(chunk_->GetAssemblyLabel(right_block)); } } } void LCodeGen::DoBranch(LBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Representation r = instr->hydrogen()->representation(); if (r.IsInteger32()) { Register reg = ToRegister(instr->InputAt(0)); __ testl(reg, reg); EmitBranch(true_block, false_block, not_zero); } else if (r.IsDouble()) { XMMRegister reg = ToDoubleRegister(instr->InputAt(0)); __ xorps(xmm0, xmm0); __ ucomisd(reg, xmm0); EmitBranch(true_block, false_block, not_equal); } else { ASSERT(r.IsTagged()); Register reg = ToRegister(instr->InputAt(0)); HType type = instr->hydrogen()->type(); if (type.IsBoolean()) { __ CompareRoot(reg, Heap::kTrueValueRootIndex); EmitBranch(true_block, false_block, equal); } else if (type.IsSmi()) { __ SmiCompare(reg, Smi::FromInt(0)); EmitBranch(true_block, false_block, not_equal); } else { Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); __ j(equal, false_label); __ CompareRoot(reg, Heap::kTrueValueRootIndex); __ j(equal, true_label); __ CompareRoot(reg, Heap::kFalseValueRootIndex); __ j(equal, false_label); __ Cmp(reg, Smi::FromInt(0)); __ j(equal, false_label); __ JumpIfSmi(reg, true_label); // Test for double values. Plus/minus zero and NaN are false. Label call_stub; __ CompareRoot(FieldOperand(reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_stub, Label::kNear); // HeapNumber => false iff +0, -0, or NaN. These three cases set the // zero flag when compared to zero using ucomisd. __ xorps(xmm0, xmm0); __ ucomisd(xmm0, FieldOperand(reg, HeapNumber::kValueOffset)); __ j(zero, false_label); __ jmp(true_label); // The conversion stub doesn't cause garbage collections so it's // safe to not record a safepoint after the call. __ bind(&call_stub); ToBooleanStub stub; __ Pushad(); __ push(reg); __ CallStub(&stub); __ testq(rax, rax); __ Popad(); EmitBranch(true_block, false_block, not_zero); } } } void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) { block = chunk_->LookupDestination(block); int next_block = GetNextEmittedBlock(current_block_); if (block != next_block) { // Perform stack overflow check if this goto needs it before jumping. if (deferred_stack_check != NULL) { __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, chunk_->GetAssemblyLabel(block)); __ jmp(deferred_stack_check->entry()); deferred_stack_check->SetExit(chunk_->GetAssemblyLabel(block)); } else { __ jmp(chunk_->GetAssemblyLabel(block)); } } } void LCodeGen::DoDeferredStackCheck(LGoto* instr) { PushSafepointRegistersScope scope(this); CallRuntimeFromDeferred(Runtime::kStackGuard, 0, instr); } void LCodeGen::DoGoto(LGoto* instr) { class DeferredStackCheck: public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LGoto* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } private: LGoto* instr_; }; DeferredStackCheck* deferred = NULL; if (instr->include_stack_check()) { deferred = new DeferredStackCheck(this, instr); } EmitGoto(instr->block_id(), deferred); } inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = no_condition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = equal; break; case Token::LT: cond = is_unsigned ? below : less; break; case Token::GT: cond = is_unsigned ? above : greater; break; case Token::LTE: cond = is_unsigned ? below_equal : less_equal; break; case Token::GTE: cond = is_unsigned ? above_equal : greater_equal; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) { if (right->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(right)); if (left->IsRegister()) { __ cmpl(ToRegister(left), Immediate(value)); } else { __ cmpl(ToOperand(left), Immediate(value)); } } else if (right->IsRegister()) { __ cmpl(ToRegister(left), ToRegister(right)); } else { __ cmpl(ToRegister(left), ToOperand(right)); } } void LCodeGen::DoCmpID(LCmpID* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); LOperand* result = instr->result(); Label unordered; if (instr->is_double()) { // Don't base result on EFLAGS when a NaN is involved. Instead // jump to the unordered case, which produces a false value. __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); __ j(parity_even, &unordered, Label::kNear); } else { EmitCmpI(left, right); } Label done; Condition cc = TokenToCondition(instr->op(), instr->is_double()); __ LoadRoot(ToRegister(result), Heap::kTrueValueRootIndex); __ j(cc, &done, Label::kNear); __ bind(&unordered); __ LoadRoot(ToRegister(result), Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); if (instr->is_double()) { // Don't base result on EFLAGS when a NaN is involved. Instead // jump to the false block. __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); __ j(parity_even, chunk_->GetAssemblyLabel(false_block)); } else { EmitCmpI(left, right); } Condition cc = TokenToCondition(instr->op(), instr->is_double()); EmitBranch(true_block, false_block, cc); } void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); Register result = ToRegister(instr->result()); Label different, done; __ cmpq(left, right); __ j(not_equal, &different, Label::kNear); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&different); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); __ cmpq(left, right); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoCmpSymbolEq(LCmpSymbolEq* instr) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); Register result = ToRegister(instr->result()); Label done; __ cmpq(left, right); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ j(not_equal, &done, Label::kNear); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoCmpSymbolEqAndBranch(LCmpSymbolEqAndBranch* instr) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); __ cmpq(left, right); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoIsNull(LIsNull* instr) { Register reg = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); // If the expression is known to be a smi, then it's // definitely not null. Materialize false. // Consider adding other type and representation tests too. if (instr->hydrogen()->value()->type().IsSmi()) { __ LoadRoot(result, Heap::kFalseValueRootIndex); return; } __ CompareRoot(reg, Heap::kNullValueRootIndex); if (instr->is_strict()) { ASSERT(Heap::kTrueValueRootIndex >= 0); __ movl(result, Immediate(Heap::kTrueValueRootIndex)); Label load; __ j(equal, &load, Label::kNear); __ Set(result, Heap::kFalseValueRootIndex); __ bind(&load); __ LoadRootIndexed(result, result, 0); } else { Label false_value, true_value, done; __ j(equal, &true_value, Label::kNear); __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); __ j(equal, &true_value, Label::kNear); __ JumpIfSmi(reg, &false_value, Label::kNear); // Check for undetectable objects by looking in the bit field in // the map. The object has already been smi checked. Register scratch = result; __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); __ testb(FieldOperand(scratch, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, &true_value, Label::kNear); __ bind(&false_value); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_value); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } } void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); int false_block = chunk_->LookupDestination(instr->false_block_id()); if (instr->hydrogen()->representation().IsSpecialization() || instr->hydrogen()->type().IsSmi()) { // If the expression is known to untagged or smi, then it's definitely // not null, and it can't be a an undetectable object. // Jump directly to the false block. EmitGoto(false_block); return; } int true_block = chunk_->LookupDestination(instr->true_block_id()); __ CompareRoot(reg, Heap::kNullValueRootIndex); if (instr->is_strict()) { EmitBranch(true_block, false_block, equal); } else { Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ j(equal, true_label); __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); __ j(equal, true_label); __ JumpIfSmi(reg, false_label); // Check for undetectable objects by looking in the bit field in // the map. The object has already been smi checked. Register scratch = ToRegister(instr->TempAt(0)); __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); __ testb(FieldOperand(scratch, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); EmitBranch(true_block, false_block, not_zero); } } Condition LCodeGen::EmitIsObject(Register input, Label* is_not_object, Label* is_object) { ASSERT(!input.is(kScratchRegister)); __ JumpIfSmi(input, is_not_object); __ CompareRoot(input, Heap::kNullValueRootIndex); __ j(equal, is_object); __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset)); // Undetectable objects behave like undefined. __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, is_not_object); __ movzxbl(kScratchRegister, FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); __ cmpb(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE)); __ j(below, is_not_object); __ cmpb(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE)); return below_equal; } void LCodeGen::DoIsObject(LIsObject* instr) { Register reg = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Label is_false, is_true, done; Condition true_cond = EmitIsObject(reg, &is_false, &is_true); __ j(true_cond, &is_true); __ bind(&is_false); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ jmp(&done); __ bind(&is_true); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsObject(reg, false_label, true_label); EmitBranch(true_block, false_block, true_cond); } void LCodeGen::DoIsSmi(LIsSmi* instr) { LOperand* input_operand = instr->InputAt(0); Register result = ToRegister(instr->result()); if (input_operand->IsRegister()) { Register input = ToRegister(input_operand); __ CheckSmiToIndicator(result, input); } else { Operand input = ToOperand(instr->InputAt(0)); __ CheckSmiToIndicator(result, input); } // result is zero if input is a smi, and one otherwise. ASSERT(Heap::kFalseValueRootIndex == Heap::kTrueValueRootIndex + 1); __ LoadRootIndexed(result, result, Heap::kTrueValueRootIndex); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Condition is_smi; if (instr->InputAt(0)->IsRegister()) { Register input = ToRegister(instr->InputAt(0)); is_smi = masm()->CheckSmi(input); } else { Operand input = ToOperand(instr->InputAt(0)); is_smi = masm()->CheckSmi(input); } EmitBranch(true_block, false_block, is_smi); } void LCodeGen::DoIsUndetectable(LIsUndetectable* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); ASSERT(instr->hydrogen()->value()->representation().IsTagged()); Label false_label, done; __ JumpIfSmi(input, &false_label); __ movq(result, FieldOperand(input, HeapObject::kMapOffset)); __ testb(FieldOperand(result, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &false_label); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ jmp(&done); __ bind(&false_label); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); __ movq(temp, FieldOperand(input, HeapObject::kMapOffset)); __ testb(FieldOperand(temp, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); EmitBranch(true_block, false_block, not_zero); } static InstanceType TestType(HHasInstanceType* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; ASSERT(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceType* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return equal; if (to == LAST_TYPE) return above_equal; if (from == FIRST_TYPE) return below_equal; UNREACHABLE(); return equal; } void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); ASSERT(instr->hydrogen()->value()->representation().IsTagged()); __ testl(input, Immediate(kSmiTagMask)); Label done, is_false; __ j(zero, &is_false); __ CmpObjectType(input, TestType(instr->hydrogen()), result); __ j(NegateCondition(BranchCondition(instr->hydrogen())), &is_false, Label::kNear); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&is_false); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ JumpIfSmi(input, false_label); __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister); EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen())); } void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (FLAG_debug_code) { __ AbortIfNotString(input); } __ movl(result, FieldOperand(input, String::kHashFieldOffset)); ASSERT(String::kHashShift >= kSmiTagSize); __ IndexFromHash(result, result); } void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); ASSERT(instr->hydrogen()->value()->representation().IsTagged()); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ testl(FieldOperand(input, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); Label done; __ j(zero, &done, Label::kNear); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoHasCachedArrayIndexAndBranch( LHasCachedArrayIndexAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ testl(FieldOperand(input, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); EmitBranch(true_block, false_block, equal); } // Branches to a label or falls through with the answer in the z flag. // Trashes the temp register and possibly input (if it and temp are aliased). void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle class_name, Register input, Register temp) { __ JumpIfSmi(input, is_false); __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, temp); __ j(below, is_false); // Map is now in temp. // Functions have class 'Function'. __ CmpInstanceType(temp, JS_FUNCTION_TYPE); if (class_name->IsEqualTo(CStrVector("Function"))) { __ j(equal, is_true); } else { __ j(equal, is_false); } // Check if the constructor in the map is a function. __ movq(temp, FieldOperand(temp, Map::kConstructorOffset)); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); // Objects with a non-function constructor have class 'Object'. __ CmpObjectType(temp, JS_FUNCTION_TYPE, kScratchRegister); if (class_name->IsEqualTo(CStrVector("Object"))) { __ j(not_equal, is_true); } else { __ j(not_equal, is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ movq(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ movq(temp, FieldOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is a symbol because it's a literal. // The name in the constructor is a symbol because of the way the context is // booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are symbols it is sufficient to use an identity // comparison. ASSERT(class_name->IsSymbol()); __ Cmp(temp, class_name); // End with the answer in the z flag. } void LCodeGen::DoClassOfTest(LClassOfTest* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); ASSERT(input.is(result)); Register temp = ToRegister(instr->TempAt(0)); Handle class_name = instr->hydrogen()->class_name(); Label done; Label is_true, is_false; EmitClassOfTest(&is_true, &is_false, class_name, input, temp); __ j(not_equal, &is_false); __ bind(&is_true); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&is_false); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); Handle class_name = instr->hydrogen()->class_name(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); EmitClassOfTest(true_label, false_label, class_name, input, temp); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); int true_block = instr->true_block_id(); int false_block = instr->false_block_id(); __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); EmitBranch(true_block, false_block, equal); } void LCodeGen::DoInstanceOf(LInstanceOf* instr) { InstanceofStub stub(InstanceofStub::kNoFlags); __ push(ToRegister(instr->InputAt(0))); __ push(ToRegister(instr->InputAt(1))); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); Label true_value, done; __ testq(rax, rax); __ j(zero, &true_value, Label::kNear); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_value); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); InstanceofStub stub(InstanceofStub::kNoFlags); __ push(ToRegister(instr->InputAt(0))); __ push(ToRegister(instr->InputAt(1))); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ testq(rax, rax); EmitBranch(true_block, false_block, zero); } void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { class DeferredInstanceOfKnownGlobal: public LDeferredCode { public: DeferredInstanceOfKnownGlobal(LCodeGen* codegen, LInstanceOfKnownGlobal* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_); } Label* map_check() { return &map_check_; } private: LInstanceOfKnownGlobal* instr_; Label map_check_; }; DeferredInstanceOfKnownGlobal* deferred; deferred = new DeferredInstanceOfKnownGlobal(this, instr); Label done, false_result; Register object = ToRegister(instr->InputAt(0)); // A Smi is not an instance of anything. __ JumpIfSmi(object, &false_result); // This is the inlined call site instanceof cache. The two occurences of the // hole value will be patched to the last map/result pair generated by the // instanceof stub. Label cache_miss; // Use a temp register to avoid memory operands with variable lengths. Register map = ToRegister(instr->TempAt(0)); __ movq(map, FieldOperand(object, HeapObject::kMapOffset)); __ bind(deferred->map_check()); // Label for calculating code patching. __ movq(kScratchRegister, factory()->the_hole_value(), RelocInfo::EMBEDDED_OBJECT); __ cmpq(map, kScratchRegister); // Patched to cached map. __ j(not_equal, &cache_miss, Label::kNear); // Patched to load either true or false. __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex); #ifdef DEBUG // Check that the code size between patch label and patch sites is invariant. Label end_of_patched_code; __ bind(&end_of_patched_code); ASSERT(true); #endif __ jmp(&done); // The inlined call site cache did not match. Check for null and string // before calling the deferred code. __ bind(&cache_miss); // Null is not an instance of anything. __ CompareRoot(object, Heap::kNullValueRootIndex); __ j(equal, &false_result, Label::kNear); // String values are not instances of anything. __ JumpIfNotString(object, kScratchRegister, deferred->entry()); __ bind(&false_result); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, Label* map_check) { { PushSafepointRegistersScope scope(this); InstanceofStub::Flags flags = static_cast( InstanceofStub::kNoFlags | InstanceofStub::kCallSiteInlineCheck); InstanceofStub stub(flags); __ push(ToRegister(instr->InputAt(0))); __ Push(instr->function()); Register temp = ToRegister(instr->TempAt(0)); static const int kAdditionalDelta = 10; int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta; ASSERT(delta >= 0); __ push_imm32(delta); // We are pushing three values on the stack but recording a // safepoint with two arguments because stub is going to // remove the third argument from the stack before jumping // to instanceof builtin on the slow path. CallCodeGeneric(stub.GetCode(), RelocInfo::CODE_TARGET, instr, RECORD_SAFEPOINT_WITH_REGISTERS, 2); ASSERT(delta == masm_->SizeOfCodeGeneratedSince(map_check)); // Move result to a register that survives the end of the // PushSafepointRegisterScope. __ movq(kScratchRegister, rax); } __ testq(kScratchRegister, kScratchRegister); Label load_false; Label done; __ j(not_zero, &load_false); __ LoadRoot(rax, Heap::kTrueValueRootIndex); __ jmp(&done); __ bind(&load_false); __ LoadRoot(rax, Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoCmpT(LCmpT* instr) { Token::Value op = instr->op(); Handle ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = TokenToCondition(op, false); if (op == Token::GT || op == Token::LTE) { condition = ReverseCondition(condition); } Label true_value, done; __ testq(rax, rax); __ j(condition, &true_value, Label::kNear); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_value); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) { Token::Value op = instr->op(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Handle ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); // The compare stub expects compare condition and the input operands // reversed for GT and LTE. Condition condition = TokenToCondition(op, false); if (op == Token::GT || op == Token::LTE) { condition = ReverseCondition(condition); } __ testq(rax, rax); EmitBranch(true_block, false_block, condition); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace) { // Preserve the return value on the stack and rely on the runtime // call to return the value in the same register. __ push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } __ movq(rsp, rbp); __ pop(rbp); __ Ret((GetParameterCount() + 1) * kPointerSize, rcx); } void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { Register result = ToRegister(instr->result()); if (result.is(rax)) { __ load_rax(instr->hydrogen()->cell().location(), RelocInfo::GLOBAL_PROPERTY_CELL); } else { __ movq(result, instr->hydrogen()->cell(), RelocInfo::GLOBAL_PROPERTY_CELL); __ movq(result, Operand(result, 0)); } if (instr->hydrogen()->check_hole_value()) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); } } void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(rax)); ASSERT(ToRegister(instr->result()).is(rax)); __ Move(rcx, instr->name()); RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, mode, instr); } void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { Register value = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); ASSERT(!value.is(temp)); bool check_hole = instr->hydrogen()->check_hole_value(); if (!check_hole && value.is(rax)) { __ store_rax(instr->hydrogen()->cell().location(), RelocInfo::GLOBAL_PROPERTY_CELL); return; } // If the cell we are storing to contains the hole it could have // been deleted from the property dictionary. In that case, we need // to update the property details in the property dictionary to mark // it as no longer deleted. We deoptimize in that case. __ movq(temp, instr->hydrogen()->cell(), RelocInfo::GLOBAL_PROPERTY_CELL); if (check_hole) { __ CompareRoot(Operand(temp, 0), Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); } __ movq(Operand(temp, 0), value); } void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(rdx)); ASSERT(ToRegister(instr->value()).is(rax)); __ Move(rcx, instr->name()); Handle ic = instr->strict_mode() ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ movq(result, ContextOperand(context, instr->slot_index())); } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); __ movq(ContextOperand(context, instr->slot_index()), value); if (instr->needs_write_barrier()) { int offset = Context::SlotOffset(instr->slot_index()); Register scratch = ToRegister(instr->TempAt(0)); __ RecordWrite(context, offset, value, scratch); } } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { Register object = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (instr->hydrogen()->is_in_object()) { __ movq(result, FieldOperand(object, instr->hydrogen()->offset())); } else { __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset)); __ movq(result, FieldOperand(result, instr->hydrogen()->offset())); } } void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, Register object, Handle type, Handle name) { LookupResult lookup; type->LookupInDescriptors(NULL, *name, &lookup); ASSERT(lookup.IsProperty() && (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION)); if (lookup.type() == FIELD) { int index = lookup.GetLocalFieldIndexFromMap(*type); int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. __ movq(result, FieldOperand(object, offset + type->instance_size())); } else { // Non-negative property indices are in the properties array. __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset)); __ movq(result, FieldOperand(result, offset + FixedArray::kHeaderSize)); } } else { Handle function(lookup.GetConstantFunctionFromMap(*type)); LoadHeapObject(result, Handle::cast(function)); } } void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); int map_count = instr->hydrogen()->types()->length(); Handle name = instr->hydrogen()->name(); if (map_count == 0) { ASSERT(instr->hydrogen()->need_generic()); __ Move(rcx, instr->hydrogen()->name()); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { Label done; for (int i = 0; i < map_count - 1; ++i) { Handle map = instr->hydrogen()->types()->at(i); Label next; __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map); __ j(not_equal, &next, Label::kNear); EmitLoadFieldOrConstantFunction(result, object, map, name); __ jmp(&done, Label::kNear); __ bind(&next); } Handle map = instr->hydrogen()->types()->last(); __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map); if (instr->hydrogen()->need_generic()) { Label generic; __ j(not_equal, &generic, Label::kNear); EmitLoadFieldOrConstantFunction(result, object, map, name); __ jmp(&done, Label::kNear); __ bind(&generic); __ Move(rcx, instr->hydrogen()->name()); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { DeoptimizeIf(not_equal, instr->environment()); EmitLoadFieldOrConstantFunction(result, object, map, name); } __ bind(&done); } } void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rax)); ASSERT(ToRegister(instr->result()).is(rax)); __ Move(rcx, instr->name()); Handle ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Check that the function really is a function. __ CmpObjectType(function, JS_FUNCTION_TYPE, result); DeoptimizeIf(not_equal, instr->environment()); // Check whether the function has an instance prototype. Label non_instance; __ testb(FieldOperand(result, Map::kBitFieldOffset), Immediate(1 << Map::kHasNonInstancePrototype)); __ j(not_zero, &non_instance, Label::kNear); // Get the prototype or initial map from the function. __ movq(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); // If the function does not have an initial map, we're done. Label done; __ CmpObjectType(result, MAP_TYPE, kScratchRegister); __ j(not_equal, &done, Label::kNear); // Get the prototype from the initial map. __ movq(result, FieldOperand(result, Map::kPrototypeOffset)); __ jmp(&done, Label::kNear); // Non-instance prototype: Fetch prototype from constructor field // in the function's map. __ bind(&non_instance); __ movq(result, FieldOperand(result, Map::kConstructorOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadElements(LLoadElements* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); __ movq(result, FieldOperand(input, JSObject::kElementsOffset)); if (FLAG_debug_code) { Label done; __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(equal, &done, Label::kNear); __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset), Heap::kFixedCOWArrayMapRootIndex); __ j(equal, &done, Label::kNear); Register temp((result.is(rax)) ? rbx : rax); __ push(temp); __ movq(temp, FieldOperand(result, HeapObject::kMapOffset)); __ movzxbq(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); __ subq(temp, Immediate(FIRST_EXTERNAL_ARRAY_TYPE)); __ cmpq(temp, Immediate(kExternalArrayTypeCount)); __ pop(temp); __ Check(below, "Check for fast elements failed."); __ bind(&done); } } void LCodeGen::DoLoadExternalArrayPointer( LLoadExternalArrayPointer* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); __ movq(result, FieldOperand(input, ExternalPixelArray::kExternalPointerOffset)); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register length = ToRegister(instr->length()); Register result = ToRegister(instr->result()); if (instr->index()->IsRegister()) { __ subl(length, ToRegister(instr->index())); } else { __ subl(length, ToOperand(instr->index())); } DeoptimizeIf(below_equal, instr->environment()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. __ movq(result, Operand(arguments, length, times_pointer_size, kPointerSize)); } void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { Register elements = ToRegister(instr->elements()); Register key = ToRegister(instr->key()); Register result = ToRegister(instr->result()); ASSERT(result.is(elements)); // Load the result. __ movq(result, FieldOperand(elements, key, times_pointer_size, FixedArray::kHeaderSize)); // Check for the hole value. if (instr->hydrogen()->RequiresHoleCheck()) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr->environment()); } } Operand LCodeGen::BuildExternalArrayOperand(LOperand* external_pointer, LOperand* key, ExternalArrayType array_type) { Register external_pointer_reg = ToRegister(external_pointer); int shift_size = ExternalArrayTypeToShiftSize(array_type); if (key->IsConstantOperand()) { int constant_value = ToInteger32(LConstantOperand::cast(key)); if (constant_value & 0xF0000000) { Abort("array index constant value too big"); } return Operand(external_pointer_reg, constant_value * (1 << shift_size)); } else { ScaleFactor scale_factor = static_cast(shift_size); return Operand(external_pointer_reg, ToRegister(key), scale_factor, 0); } } void LCodeGen::DoLoadKeyedSpecializedArrayElement( LLoadKeyedSpecializedArrayElement* instr) { ExternalArrayType array_type = instr->array_type(); Operand operand(BuildExternalArrayOperand(instr->external_pointer(), instr->key(), array_type)); if (array_type == kExternalFloatArray) { XMMRegister result(ToDoubleRegister(instr->result())); __ movss(result, operand); __ cvtss2sd(result, result); } else if (array_type == kExternalDoubleArray) { __ movsd(ToDoubleRegister(instr->result()), operand); } else { Register result(ToRegister(instr->result())); switch (array_type) { case kExternalByteArray: __ movsxbq(result, operand); break; case kExternalUnsignedByteArray: case kExternalPixelArray: __ movzxbq(result, operand); break; case kExternalShortArray: __ movsxwq(result, operand); break; case kExternalUnsignedShortArray: __ movzxwq(result, operand); break; case kExternalIntArray: __ movsxlq(result, operand); break; case kExternalUnsignedIntArray: __ movl(result, operand); __ testl(result, result); // TODO(danno): we could be more clever here, perhaps having a special // version of the stub that detects if the overflow case actually // happens, and generate code that returns a double rather than int. DeoptimizeIf(negative, instr->environment()); break; case kExternalFloatArray: case kExternalDoubleArray: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rdx)); ASSERT(ToRegister(instr->key()).is(rax)); Handle ic = isolate()->builtins()->KeyedLoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register result = ToRegister(instr->result()); // Check for arguments adapter frame. Label done, adapted; __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(result, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adapted, Label::kNear); // No arguments adaptor frame. __ movq(result, rbp); __ jmp(&done, Label::kNear); // Arguments adaptor frame present. __ bind(&adapted); __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ bind(&done); } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. if (instr->InputAt(0)->IsRegister()) { __ cmpq(rbp, ToRegister(instr->InputAt(0))); } else { __ cmpq(rbp, ToOperand(instr->InputAt(0))); } __ movl(result, Immediate(scope()->num_parameters())); __ j(equal, &done, Label::kNear); // Arguments adaptor frame present. Get argument length from there. __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiToInteger32(result, Operand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); ASSERT(receiver.is(rax)); // Used for parameter count. ASSERT(function.is(rdi)); // Required by InvokeFunction. ASSERT(ToRegister(instr->result()).is(rax)); // If the receiver is null or undefined, we have to pass the global object // as a receiver. Label global_object, receiver_ok; __ CompareRoot(receiver, Heap::kNullValueRootIndex); __ j(equal, &global_object, Label::kNear); __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex); __ j(equal, &global_object, Label::kNear); // The receiver should be a JS object. Condition is_smi = __ CheckSmi(receiver); DeoptimizeIf(is_smi, instr->environment()); __ CmpObjectType(receiver, FIRST_JS_OBJECT_TYPE, kScratchRegister); DeoptimizeIf(below, instr->environment()); __ jmp(&receiver_ok, Label::kNear); __ bind(&global_object); // TODO(kmillikin): We have a hydrogen value for the global object. See // if it's better to use it than to explicitly fetch it from the context // here. __ movq(receiver, Operand(rbp, StandardFrameConstants::kContextOffset)); __ movq(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX)); __ bind(&receiver_ok); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ cmpq(length, Immediate(kArgumentsLimit)); DeoptimizeIf(above, instr->environment()); __ push(receiver); __ movq(receiver, length); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ testl(length, length); __ j(zero, &invoke, Label::kNear); __ bind(&loop); __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize)); __ decl(length); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); LEnvironment* env = instr->deoptimization_environment(); RecordPosition(pointers->position()); RegisterEnvironmentForDeoptimization(env); SafepointGenerator safepoint_generator(this, pointers, env->deoptimization_index()); v8::internal::ParameterCount actual(rax); __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->InputAt(0); EmitPushTaggedOperand(argument); } void LCodeGen::DoContext(LContext* instr) { Register result = ToRegister(instr->result()); __ movq(result, rsi); } void LCodeGen::DoOuterContext(LOuterContext* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ movq(result, Operand(context, Context::SlotOffset(Context::CLOSURE_INDEX))); __ movq(result, FieldOperand(result, JSFunction::kContextOffset)); } void LCodeGen::DoGlobalObject(LGlobalObject* instr) { Register result = ToRegister(instr->result()); __ movq(result, GlobalObjectOperand()); } void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { Register global = ToRegister(instr->global()); Register result = ToRegister(instr->result()); __ movq(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset)); } void LCodeGen::CallKnownFunction(Handle function, int arity, LInstruction* instr, CallKind call_kind) { // Change context if needed. bool change_context = (info()->closure()->context() != function->context()) || scope()->contains_with() || (scope()->num_heap_slots() > 0); if (change_context) { __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); } // Set rax to arguments count if adaption is not needed. Assumes that rax // is available to write to at this point. if (!function->NeedsArgumentsAdaption()) { __ Set(rax, arity); } LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); // Invoke function. __ SetCallKind(rcx, call_kind); if (*function == *info()->closure()) { __ CallSelf(); } else { __ call(FieldOperand(rdi, JSFunction::kCodeEntryOffset)); } // Setup deoptimization. RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT, 0); // Restore context. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { ASSERT(ToRegister(instr->result()).is(rax)); __ Move(rdi, instr->function()); CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD); } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { Register input_reg = ToRegister(instr->InputAt(0)); __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); DeoptimizeIf(not_equal, instr->environment()); Label done; Register tmp = input_reg.is(rax) ? rcx : rax; Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx; // Preserve the value of all registers. PushSafepointRegistersScope scope(this); Label negative; __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. We do not need to patch the stack since |input| and // |result| are the same register and |input| will be restored // unchanged by popping safepoint registers. __ testl(tmp, Immediate(HeapNumber::kSignMask)); __ j(not_zero, &negative); __ jmp(&done); __ bind(&negative); Label allocated, slow; __ AllocateHeapNumber(tmp, tmp2, &slow); __ jmp(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); // Set the pointer to the new heap number in tmp. if (!tmp.is(rax)) { __ movq(tmp, rax); } // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input_reg, input_reg); __ bind(&allocated); __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ shl(tmp2, Immediate(1)); __ shr(tmp2, Immediate(1)); __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2); __ StoreToSafepointRegisterSlot(input_reg, tmp); __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { Register input_reg = ToRegister(instr->InputAt(0)); __ testl(input_reg, input_reg); Label is_positive; __ j(not_sign, &is_positive); __ negl(input_reg); // Sets flags. DeoptimizeIf(negative, instr->environment()); __ bind(&is_positive); } void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LUnaryMathOperation* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } private: LUnaryMathOperation* instr_; }; ASSERT(instr->InputAt(0)->Equals(instr->result())); Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { XMMRegister scratch = xmm0; XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); __ xorps(scratch, scratch); __ subsd(scratch, input_reg); __ andpd(input_reg, scratch); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else { // Tagged case. DeferredMathAbsTaggedHeapNumber* deferred = new DeferredMathAbsTaggedHeapNumber(this, instr); Register input_reg = ToRegister(instr->InputAt(0)); // Smi check. __ JumpIfNotSmi(input_reg, deferred->entry()); __ SmiToInteger32(input_reg, input_reg); EmitIntegerMathAbs(instr); __ Integer32ToSmi(input_reg, input_reg); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { XMMRegister xmm_scratch = xmm0; Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatures::Scope scope(SSE4_1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Deoptimize if minus zero. __ movq(output_reg, input_reg); __ subq(output_reg, Immediate(1)); DeoptimizeIf(overflow, instr->environment()); } __ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown); __ cvttsd2si(output_reg, xmm_scratch); __ cmpl(output_reg, Immediate(0x80000000)); DeoptimizeIf(equal, instr->environment()); } else { __ xorps(xmm_scratch, xmm_scratch); // Zero the register. __ ucomisd(input_reg, xmm_scratch); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(below_equal, instr->environment()); } else { DeoptimizeIf(below, instr->environment()); } // Use truncating instruction (OK because input is positive). __ cvttsd2si(output_reg, input_reg); // Overflow is signalled with minint. __ cmpl(output_reg, Immediate(0x80000000)); DeoptimizeIf(equal, instr->environment()); } } void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { const XMMRegister xmm_scratch = xmm0; Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); Label done; // xmm_scratch = 0.5 __ movq(kScratchRegister, V8_INT64_C(0x3FE0000000000000), RelocInfo::NONE); __ movq(xmm_scratch, kScratchRegister); Label below_half; __ ucomisd(xmm_scratch, input_reg); // If input_reg is NaN, this doesn't jump. __ j(above, &below_half, Label::kNear); // input = input + 0.5 // This addition might give a result that isn't the correct for // rounding, due to loss of precision, but only for a number that's // so big that the conversion below will overflow anyway. __ addsd(input_reg, xmm_scratch); // Compute Math.floor(input). // Use truncating instruction (OK because input is positive). __ cvttsd2si(output_reg, input_reg); // Overflow is signalled with minint. __ cmpl(output_reg, Immediate(0x80000000)); DeoptimizeIf(equal, instr->environment()); __ jmp(&done); __ bind(&below_half); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bailout if negative (including -0). __ movq(output_reg, input_reg); __ testq(output_reg, output_reg); DeoptimizeIf(negative, instr->environment()); } else { // Bailout if below -0.5, otherwise round to (positive) zero, even // if negative. // xmm_scrach = -0.5 __ movq(kScratchRegister, V8_INT64_C(0xBFE0000000000000), RelocInfo::NONE); __ movq(xmm_scratch, kScratchRegister); __ ucomisd(input_reg, xmm_scratch); DeoptimizeIf(below, instr->environment()); } __ xorl(output_reg, output_reg); __ bind(&done); } void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); __ sqrtsd(input_reg, input_reg); } void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { XMMRegister xmm_scratch = xmm0; XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); ASSERT(ToDoubleRegister(instr->result()).is(input_reg)); __ xorps(xmm_scratch, xmm_scratch); __ addsd(input_reg, xmm_scratch); // Convert -0 to +0. __ sqrtsd(input_reg, input_reg); } void LCodeGen::DoPower(LPower* instr) { LOperand* left = instr->InputAt(0); XMMRegister left_reg = ToDoubleRegister(left); ASSERT(!left_reg.is(xmm1)); LOperand* right = instr->InputAt(1); XMMRegister result_reg = ToDoubleRegister(instr->result()); Representation exponent_type = instr->hydrogen()->right()->representation(); if (exponent_type.IsDouble()) { __ PrepareCallCFunction(2); // Move arguments to correct registers __ movaps(xmm0, left_reg); ASSERT(ToDoubleRegister(right).is(xmm1)); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 2); } else if (exponent_type.IsInteger32()) { __ PrepareCallCFunction(2); // Move arguments to correct registers: xmm0 and edi (not rdi). // On Windows, the registers are xmm0 and edx. __ movaps(xmm0, left_reg); #ifdef _WIN64 ASSERT(ToRegister(right).is(rdx)); #else ASSERT(ToRegister(right).is(rdi)); #endif __ CallCFunction( ExternalReference::power_double_int_function(isolate()), 2); } else { ASSERT(exponent_type.IsTagged()); Register right_reg = ToRegister(right); Label non_smi, call; __ JumpIfNotSmi(right_reg, &non_smi); __ SmiToInteger32(right_reg, right_reg); __ cvtlsi2sd(xmm1, right_reg); __ jmp(&call); __ bind(&non_smi); __ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , kScratchRegister); DeoptimizeIf(not_equal, instr->environment()); __ movsd(xmm1, FieldOperand(right_reg, HeapNumber::kValueOffset)); __ bind(&call); __ PrepareCallCFunction(2); // Move arguments to correct registers xmm0 and xmm1. __ movaps(xmm0, left_reg); // Right argument is already in xmm1. __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 2); } // Return value is in xmm0. __ movaps(result_reg, xmm0); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(xmm1)); TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { switch (instr->op()) { case kMathAbs: DoMathAbs(instr); break; case kMathFloor: DoMathFloor(instr); break; case kMathRound: DoMathRound(instr); break; case kMathSqrt: DoMathSqrt(instr); break; case kMathPowHalf: DoMathPowHalf(instr); break; case kMathCos: DoMathCos(instr); break; case kMathSin: DoMathSin(instr); break; case kMathLog: DoMathLog(instr); break; default: UNREACHABLE(); } } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { ASSERT(ToRegister(instr->function()).is(rdi)); ASSERT(instr->HasPointerMap()); ASSERT(instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); LEnvironment* env = instr->deoptimization_environment(); RecordPosition(pointers->position()); RegisterEnvironmentForDeoptimization(env); SafepointGenerator generator(this, pointers, env->deoptimization_index()); ParameterCount count(instr->arity()); __ InvokeFunction(rdi, count, CALL_FUNCTION, generator); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallKeyed(LCallKeyed* instr) { ASSERT(ToRegister(instr->key()).is(rcx)); ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); Handle ic = isolate()->stub_cache()->ComputeKeyedCallInitialize( arity, NOT_IN_LOOP); CallCode(ic, RelocInfo::CODE_TARGET, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallNamed(LCallNamed* instr) { ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, NOT_IN_LOOP, mode); __ Move(rcx, instr->name()); CallCode(ic, mode, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallFunction(LCallFunction* instr) { ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_IMPLICIT); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ Drop(1); } void LCodeGen::DoCallGlobal(LCallGlobal* instr) { ASSERT(ToRegister(instr->result()).is(rax)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; Handle ic = isolate()->stub_cache()->ComputeCallInitialize(arity, NOT_IN_LOOP, mode); __ Move(rcx, instr->name()); CallCode(ic, mode, instr); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { ASSERT(ToRegister(instr->result()).is(rax)); __ Move(rdi, instr->target()); CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION); } void LCodeGen::DoCallNew(LCallNew* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(rdi)); ASSERT(ToRegister(instr->result()).is(rax)); Handle builtin = isolate()->builtins()->JSConstructCall(); __ Set(rax, instr->arity()); CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr); } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Register object = ToRegister(instr->object()); Register value = ToRegister(instr->value()); int offset = instr->offset(); if (!instr->transition().is_null()) { __ Move(FieldOperand(object, HeapObject::kMapOffset), instr->transition()); } // Do the store. if (instr->is_in_object()) { __ movq(FieldOperand(object, offset), value); if (instr->needs_write_barrier()) { Register temp = ToRegister(instr->TempAt(0)); // Update the write barrier for the object for in-object properties. __ RecordWrite(object, offset, value, temp); } } else { Register temp = ToRegister(instr->TempAt(0)); __ movq(temp, FieldOperand(object, JSObject::kPropertiesOffset)); __ movq(FieldOperand(temp, offset), value); if (instr->needs_write_barrier()) { // Update the write barrier for the properties array. // object is used as a scratch register. __ RecordWrite(temp, offset, value, object); } } } void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rdx)); ASSERT(ToRegister(instr->value()).is(rax)); __ Move(rcx, instr->hydrogen()->name()); Handle ic = instr->strict_mode() ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStoreKeyedSpecializedArrayElement( LStoreKeyedSpecializedArrayElement* instr) { ExternalArrayType array_type = instr->array_type(); Operand operand(BuildExternalArrayOperand(instr->external_pointer(), instr->key(), array_type)); if (array_type == kExternalFloatArray) { XMMRegister value(ToDoubleRegister(instr->value())); __ cvtsd2ss(value, value); __ movss(operand, value); } else if (array_type == kExternalDoubleArray) { __ movsd(operand, ToDoubleRegister(instr->value())); } else { Register value(ToRegister(instr->value())); switch (array_type) { case kExternalPixelArray: case kExternalByteArray: case kExternalUnsignedByteArray: __ movb(operand, value); break; case kExternalShortArray: case kExternalUnsignedShortArray: __ movw(operand, value); break; case kExternalIntArray: case kExternalUnsignedIntArray: __ movl(operand, value); break; case kExternalFloatArray: case kExternalDoubleArray: UNREACHABLE(); break; } } } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { if (instr->length()->IsRegister()) { __ cmpq(ToRegister(instr->index()), ToRegister(instr->length())); } else { __ cmpq(ToRegister(instr->index()), ToOperand(instr->length())); } DeoptimizeIf(above_equal, instr->environment()); } void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->object()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; // Do the store. if (instr->key()->IsConstantOperand()) { ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); int offset = ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; __ movq(FieldOperand(elements, offset), value); } else { __ movq(FieldOperand(elements, key, times_pointer_size, FixedArray::kHeaderSize), value); } if (instr->hydrogen()->NeedsWriteBarrier()) { // Compute address of modified element and store it into key register. __ lea(key, FieldOperand(elements, key, times_pointer_size, FixedArray::kHeaderSize)); __ RecordWrite(elements, key, value); } } void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(rdx)); ASSERT(ToRegister(instr->key()).is(rcx)); ASSERT(ToRegister(instr->value()).is(rax)); Handle ic = instr->strict_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() : isolate()->builtins()->KeyedStoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringAdd(LStringAdd* instr) { EmitPushTaggedOperand(instr->left()); EmitPushTaggedOperand(instr->right()); StringAddStub stub(NO_STRING_CHECK_IN_STUB); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt: public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } private: LStringCharCodeAt* instr_; }; Register string = ToRegister(instr->string()); Register index = no_reg; int const_index = -1; if (instr->index()->IsConstantOperand()) { const_index = ToInteger32(LConstantOperand::cast(instr->index())); STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); if (!Smi::IsValid(const_index)) { // Guaranteed to be out of bounds because of the assert above. // So the bounds check that must dominate this instruction must // have deoptimized already. if (FLAG_debug_code) { __ Abort("StringCharCodeAt: out of bounds index."); } // No code needs to be generated. return; } } else { index = ToRegister(instr->index()); } Register result = ToRegister(instr->result()); DeferredStringCharCodeAt* deferred = new DeferredStringCharCodeAt(this, instr); Label flat_string, ascii_string, done; // Fetch the instance type of the receiver into result register. __ movq(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset)); // We need special handling for non-sequential strings. STATIC_ASSERT(kSeqStringTag == 0); __ testb(result, Immediate(kStringRepresentationMask)); __ j(zero, &flat_string, Label::kNear); // Handle cons strings and go to deferred code for the rest. __ testb(result, Immediate(kIsConsStringMask)); __ j(zero, deferred->entry()); // ConsString. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ CompareRoot(FieldOperand(string, ConsString::kSecondOffset), Heap::kEmptyStringRootIndex); __ j(not_equal, deferred->entry()); // Get the first of the two strings and load its instance type. __ movq(string, FieldOperand(string, ConsString::kFirstOffset)); __ movq(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset)); // If the first cons component is also non-flat, then go to runtime. STATIC_ASSERT(kSeqStringTag == 0); __ testb(result, Immediate(kStringRepresentationMask)); __ j(not_zero, deferred->entry()); // Check for ASCII or two-byte string. __ bind(&flat_string); STATIC_ASSERT(kAsciiStringTag != 0); __ testb(result, Immediate(kStringEncodingMask)); __ j(not_zero, &ascii_string, Label::kNear); // Two-byte string. // Load the two-byte character code into the result register. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); if (instr->index()->IsConstantOperand()) { __ movzxwl(result, FieldOperand(string, SeqTwoByteString::kHeaderSize + (kUC16Size * const_index))); } else { __ movzxwl(result, FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize)); } __ jmp(&done, Label::kNear); // ASCII string. // Load the byte into the result register. __ bind(&ascii_string); if (instr->index()->IsConstantOperand()) { __ movzxbl(result, FieldOperand(string, SeqAsciiString::kHeaderSize + const_index)); } else { __ movzxbl(result, FieldOperand(string, index, times_1, SeqAsciiString::kHeaderSize)); } __ bind(&done); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, 0); PushSafepointRegistersScope scope(this); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ Push(Smi::FromInt(const_index)); } else { Register index = ToRegister(instr->index()); __ Integer32ToSmi(index, index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); if (FLAG_debug_code) { __ AbortIfNotSmi(rax); } __ SmiToInteger32(rax, rax); __ StoreToSafepointRegisterSlot(result, rax); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode: public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(this, instr); ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); ASSERT(!char_code.is(result)); __ cmpl(char_code, Immediate(String::kMaxAsciiCharCode)); __ j(above, deferred->entry()); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ movq(result, FieldOperand(result, char_code, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(result, Heap::kUndefinedValueRootIndex); __ j(equal, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, 0); PushSafepointRegistersScope scope(this); __ Integer32ToSmi(char_code, char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); __ StoreToSafepointRegisterSlot(result, rax); } void LCodeGen::DoStringLength(LStringLength* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); __ movq(result, FieldOperand(string, String::kLengthOffset)); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); ASSERT(output->IsDoubleRegister()); if (input->IsRegister()) { __ cvtlsi2sd(ToDoubleRegister(output), ToRegister(input)); } else { __ cvtlsi2sd(ToDoubleRegister(output), ToOperand(input)); } } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); __ Integer32ToSmi(reg, reg); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD: public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } private: LNumberTagD* instr_; }; XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0)); Register reg = ToRegister(instr->result()); Register tmp = ToRegister(instr->TempAt(0)); DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, deferred->entry()); } else { __ jmp(deferred->entry()); } __ bind(deferred->exit()); __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ Move(reg, Smi::FromInt(0)); { PushSafepointRegistersScope scope(this); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); // Ensure that value in rax survives popping registers. __ movq(kScratchRegister, rax); } __ movq(reg, kScratchRegister); } void LCodeGen::DoSmiTag(LSmiTag* instr) { ASSERT(instr->InputAt(0)->Equals(instr->result())); Register input = ToRegister(instr->InputAt(0)); ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); __ Integer32ToSmi(input, input); } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { ASSERT(instr->InputAt(0)->Equals(instr->result())); Register input = ToRegister(instr->InputAt(0)); if (instr->needs_check()) { Condition is_smi = __ CheckSmi(input); DeoptimizeIf(NegateCondition(is_smi), instr->environment()); } __ SmiToInteger32(input, input); } void LCodeGen::EmitNumberUntagD(Register input_reg, XMMRegister result_reg, LEnvironment* env) { Label load_smi, heap_number, done; // Smi check. __ JumpIfSmi(input_reg, &load_smi, Label::kNear); // Heap number map check. __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(equal, &heap_number, Label::kNear); __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); DeoptimizeIf(not_equal, env); // Convert undefined to NaN. Compute NaN as 0/0. __ xorps(result_reg, result_reg); __ divsd(result_reg, result_reg); __ jmp(&done, Label::kNear); // Heap number to XMM conversion. __ bind(&heap_number); __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ jmp(&done, Label::kNear); // Smi to XMM conversion __ bind(&load_smi); __ SmiToInteger32(kScratchRegister, input_reg); __ cvtlsi2sd(result_reg, kScratchRegister); __ bind(&done); } class DeferredTaggedToI: public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } private: LTaggedToI* instr_; }; void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Label done, heap_number; Register input_reg = ToRegister(instr->InputAt(0)); // Heap number map check. __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); if (instr->truncating()) { __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for truncating // conversions. __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); DeoptimizeIf(not_equal, instr->environment()); __ Set(input_reg, 0); __ jmp(&done, Label::kNear); __ bind(&heap_number); __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ cvttsd2siq(input_reg, xmm0); __ Set(kScratchRegister, V8_UINT64_C(0x8000000000000000)); __ cmpq(input_reg, kScratchRegister); DeoptimizeIf(equal, instr->environment()); } else { // Deoptimize if we don't have a heap number. DeoptimizeIf(not_equal, instr->environment()); XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0)); __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ cvttsd2si(input_reg, xmm0); __ cvtlsi2sd(xmm_temp, input_reg); __ ucomisd(xmm0, xmm_temp); DeoptimizeIf(not_equal, instr->environment()); DeoptimizeIf(parity_even, instr->environment()); // NaN. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ testl(input_reg, input_reg); __ j(not_zero, &done); __ movmskpd(input_reg, xmm0); __ andl(input_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); ASSERT(input->Equals(instr->result())); Register input_reg = ToRegister(input); DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); __ JumpIfNotSmi(input_reg, deferred->entry()); __ SmiToInteger32(input_reg, input_reg); __ bind(deferred->exit()); } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); LOperand* result = instr->result(); ASSERT(result->IsDoubleRegister()); Register input_reg = ToRegister(input); XMMRegister result_reg = ToDoubleRegister(result); EmitNumberUntagD(input_reg, result_reg, instr->environment()); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsDoubleRegister()); LOperand* result = instr->result(); ASSERT(result->IsRegister()); XMMRegister input_reg = ToDoubleRegister(input); Register result_reg = ToRegister(result); if (instr->truncating()) { // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. __ cvttsd2siq(result_reg, input_reg); __ movq(kScratchRegister, V8_INT64_C(0x8000000000000000), RelocInfo::NONE); __ cmpq(result_reg, kScratchRegister); DeoptimizeIf(equal, instr->environment()); } else { __ cvttsd2si(result_reg, input_reg); __ cvtlsi2sd(xmm0, result_reg); __ ucomisd(xmm0, input_reg); DeoptimizeIf(not_equal, instr->environment()); DeoptimizeIf(parity_even, instr->environment()); // NaN. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; // The integer converted back is equal to the original. We // only have to test if we got -0 as an input. __ testl(result_reg, result_reg); __ j(not_zero, &done, Label::kNear); __ movmskpd(result_reg, input_reg); // Bit 0 contains the sign of the double in input_reg. // If input was positive, we are ok and return 0, otherwise // deoptimize. __ andl(result_reg, Immediate(1)); DeoptimizeIf(not_zero, instr->environment()); __ bind(&done); } } } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->InputAt(0); Condition cc = masm()->CheckSmi(ToRegister(input)); DeoptimizeIf(NegateCondition(cc), instr->environment()); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { LOperand* input = instr->InputAt(0); Condition cc = masm()->CheckSmi(ToRegister(input)); DeoptimizeIf(cc, instr->environment()); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->InputAt(0)); __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(static_cast(first))); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(not_equal, instr->environment()); } else { DeoptimizeIf(below, instr->environment()); // Omit check for the last type. if (last != LAST_TYPE) { __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(static_cast(last))); DeoptimizeIf(above, instr->environment()); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (IsPowerOf2(mask)) { ASSERT(tag == 0 || IsPowerOf2(tag)); __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(mask)); DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment()); } else { __ movzxbl(kScratchRegister, FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); __ andb(kScratchRegister, Immediate(mask)); __ cmpb(kScratchRegister, Immediate(tag)); DeoptimizeIf(not_equal, instr->environment()); } } } void LCodeGen::DoCheckFunction(LCheckFunction* instr) { ASSERT(instr->InputAt(0)->IsRegister()); Register reg = ToRegister(instr->InputAt(0)); __ Cmp(reg, instr->hydrogen()->target()); DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoCheckMap(LCheckMap* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); Register reg = ToRegister(input); __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->hydrogen()->map()); DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { XMMRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); Register temp_reg = ToRegister(instr->TempAt(0)); __ ClampDoubleToUint8(value_reg, xmm0, result_reg, temp_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { ASSERT(instr->unclamped()->Equals(instr->result())); Register value_reg = ToRegister(instr->result()); __ ClampUint8(value_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { ASSERT(instr->unclamped()->Equals(instr->result())); Register input_reg = ToRegister(instr->unclamped()); Register temp_reg = ToRegister(instr->TempAt(0)); XMMRegister temp_xmm_reg = ToDoubleRegister(instr->TempAt(1)); Label is_smi, done, heap_number; __ JumpIfSmi(input_reg, &is_smi); // Check for heap number __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for clamping // conversions. __ Cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, instr->environment()); __ movq(input_reg, Immediate(0)); __ jmp(&done, Label::kNear); // Heap number __ bind(&heap_number); __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(xmm0, temp_xmm_reg, input_reg, temp_reg); __ jmp(&done, Label::kNear); // smi __ bind(&is_smi); __ SmiToInteger32(input_reg, input_reg); __ ClampUint8(input_reg); __ bind(&done); } void LCodeGen::LoadHeapObject(Register result, Handle object) { if (heap()->InNewSpace(*object)) { Handle cell = factory()->NewJSGlobalPropertyCell(object); __ movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL); __ movq(result, Operand(result, 0)); } else { __ Move(result, object); } } void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { Register reg = ToRegister(instr->TempAt(0)); Handle holder = instr->holder(); Handle current_prototype = instr->prototype(); // Load prototype object. LoadHeapObject(reg, current_prototype); // Check prototype maps up to the holder. while (!current_prototype.is_identical_to(holder)) { __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle(current_prototype->map())); DeoptimizeIf(not_equal, instr->environment()); current_prototype = Handle(JSObject::cast(current_prototype->GetPrototype())); // Load next prototype object. LoadHeapObject(reg, current_prototype); } // Check the holder map. __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle(current_prototype->map())); DeoptimizeIf(not_equal, instr->environment()); } void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { // Setup the parameters to the stub/runtime call. __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rax, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(instr->hydrogen()->literal_index())); __ Push(instr->hydrogen()->constant_elements()); // Pick the right runtime function or stub to call. int length = instr->hydrogen()->length(); if (instr->hydrogen()->IsCopyOnWrite()) { ASSERT(instr->hydrogen()->depth() == 1); FastCloneShallowArrayStub::Mode mode = FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); } else { FastCloneShallowArrayStub::Mode mode = FastCloneShallowArrayStub::CLONE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { // Setup the parameters to the stub/runtime call. __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rax, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(instr->hydrogen()->literal_index())); __ Push(instr->hydrogen()->constant_properties()); __ Push(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0)); // Pick the right runtime function to call. if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); } else { CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); } } void LCodeGen::DoToFastProperties(LToFastProperties* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(rax)); __ push(rax); CallRuntime(Runtime::kToFastProperties, 1, instr); } void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { Label materialized; // Registers will be used as follows: // rdi = JS function. // rcx = literals array. // rbx = regexp literal. // rax = regexp literal clone. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + instr->hydrogen()->literal_index() * kPointerSize; __ movq(rbx, FieldOperand(rcx, literal_offset)); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &materialized, Label::kNear); // Create regexp literal using runtime function // Result will be in rax. __ push(rcx); __ Push(Smi::FromInt(instr->hydrogen()->literal_index())); __ Push(instr->hydrogen()->pattern()); __ Push(instr->hydrogen()->flags()); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); __ movq(rbx, rax); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(rbx); __ Push(Smi::FromInt(size)); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ pop(rbx); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ movq(rdx, FieldOperand(rbx, i)); __ movq(rcx, FieldOperand(rbx, i + kPointerSize)); __ movq(FieldOperand(rax, i), rdx); __ movq(FieldOperand(rax, i + kPointerSize), rcx); } if ((size % (2 * kPointerSize)) != 0) { __ movq(rdx, FieldOperand(rbx, size - kPointerSize)); __ movq(FieldOperand(rax, size - kPointerSize), rdx); } } void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. Handle shared_info = instr->shared_info(); bool pretenure = instr->hydrogen()->pretenure(); if (!pretenure && shared_info->num_literals() == 0) { FastNewClosureStub stub( shared_info->strict_mode() ? kStrictMode : kNonStrictMode); __ Push(shared_info); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else { __ push(rsi); __ Push(shared_info); __ PushRoot(pretenure ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); CallRuntime(Runtime::kNewClosure, 3, instr); } } void LCodeGen::DoTypeof(LTypeof* instr) { LOperand* input = instr->InputAt(0); EmitPushTaggedOperand(input); CallRuntime(Runtime::kTypeof, 1, instr); } void LCodeGen::DoTypeofIs(LTypeofIs* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Label true_label; Label false_label; Label done; Condition final_branch_condition = EmitTypeofIs(&true_label, &false_label, input, instr->type_literal()); __ j(final_branch_condition, &true_label); __ bind(&false_label); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_label); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::EmitPushTaggedOperand(LOperand* operand) { ASSERT(!operand->IsDoubleRegister()); if (operand->IsConstantOperand()) { __ Push(ToHandle(LConstantOperand::cast(operand))); } else if (operand->IsRegister()) { __ push(ToRegister(operand)); } else { __ push(ToOperand(operand)); } } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition final_branch_condition = EmitTypeofIs(true_label, false_label, input, instr->type_literal()); EmitBranch(true_block, false_block, final_branch_condition); } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle type_name) { Condition final_branch_condition = no_condition; if (type_name->Equals(heap()->number_symbol())) { __ JumpIfSmi(input, true_label); __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); final_branch_condition = equal; } else if (type_name->Equals(heap()->string_symbol())) { __ JumpIfSmi(input, false_label); __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); __ j(above_equal, false_label); __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = zero; } else if (type_name->Equals(heap()->boolean_symbol())) { __ CompareRoot(input, Heap::kTrueValueRootIndex); __ j(equal, true_label); __ CompareRoot(input, Heap::kFalseValueRootIndex); final_branch_condition = equal; } else if (type_name->Equals(heap()->undefined_symbol())) { __ CompareRoot(input, Heap::kUndefinedValueRootIndex); __ j(equal, true_label); __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ movq(input, FieldOperand(input, HeapObject::kMapOffset)); __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = not_zero; } else if (type_name->Equals(heap()->function_symbol())) { __ JumpIfSmi(input, false_label); __ CmpObjectType(input, FIRST_FUNCTION_CLASS_TYPE, input); final_branch_condition = above_equal; } else if (type_name->Equals(heap()->object_symbol())) { __ JumpIfSmi(input, false_label); __ CompareRoot(input, Heap::kNullValueRootIndex); __ j(equal, true_label); __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, input); __ j(below, false_label); __ CmpInstanceType(input, FIRST_FUNCTION_CLASS_TYPE); __ j(above_equal, false_label); // Check for undetectable objects => false. __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = zero; } else { final_branch_condition = never; __ jmp(false_label); } return final_branch_condition; } void LCodeGen::DoIsConstructCall(LIsConstructCall* instr) { Register result = ToRegister(instr->result()); Label true_label; Label done; EmitIsConstructCall(result); __ j(equal, &true_label, Label::kNear); __ LoadRoot(result, Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_label); __ LoadRoot(result, Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); EmitIsConstructCall(temp); EmitBranch(true_block, false_block, equal); } void LCodeGen::EmitIsConstructCall(Register temp) { // Get the frame pointer for the calling frame. __ movq(temp, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ Cmp(Operand(temp, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &check_frame_marker, Label::kNear); __ movq(temp, Operand(rax, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ Cmp(Operand(temp, StandardFrameConstants::kMarkerOffset), Smi::FromInt(StackFrame::CONSTRUCT)); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { // No code for lazy bailout instruction. Used to capture environment after a // call for populating the safepoint data with deoptimization data. } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { DeoptimizeIf(no_condition, instr->environment()); } void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { LOperand* obj = instr->object(); LOperand* key = instr->key(); EmitPushTaggedOperand(obj); EmitPushTaggedOperand(key); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); LEnvironment* env = instr->deoptimization_environment(); RecordPosition(pointers->position()); RegisterEnvironmentForDeoptimization(env); // Create safepoint generator that will also ensure enough space in the // reloc info for patching in deoptimization (since this is invoking a // builtin) SafepointGenerator safepoint_generator(this, pointers, env->deoptimization_index()); __ Push(Smi::FromInt(strict_mode_flag())); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoIn(LIn* instr) { LOperand* obj = instr->object(); LOperand* key = instr->key(); EmitPushTaggedOperand(key); EmitPushTaggedOperand(obj); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); LEnvironment* env = instr->deoptimization_environment(); RecordPosition(pointers->position()); RegisterEnvironmentForDeoptimization(env); // Create safepoint generator that will also ensure enough space in the // reloc info for patching in deoptimization (since this is invoking a // builtin) SafepointGenerator safepoint_generator(this, pointers, env->deoptimization_index()); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoStackCheck(LStackCheck* instr) { // Perform stack overflow check. Label done; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &done, Label::kNear); StackCheckStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); environment->SetSpilledRegisters(instr->SpilledRegisterArray(), instr->SpilledDoubleRegisterArray()); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. ASSERT(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment); ASSERT(osr_pc_offset_ == -1); osr_pc_offset_ = masm()->pc_offset(); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64