# frozen_string_literal: true require 'rumale/tree/base_decision_tree' require 'rumale/base/regressor' module Rumale module Tree # DecisionTreeRegressor is a class that implements decision tree for regression. # # @example # require 'rumale/tree/decision_tree_regressor' # # estimator = # Rumale::Tree::DecisionTreeRegressor.new( # max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1) # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # class DecisionTreeRegressor < BaseDecisionTree include ::Rumale::Base::Regressor include ::Rumale::Tree::ExtDecisionTreeRegressor # Return the importance for each feature. # @return [Numo::DFloat] (size: n_features) attr_reader :feature_importances # Return the learned tree. # @return [Node] attr_reader :tree # Return the random generator for random selection of feature index. # @return [Random] attr_reader :rng # Return the values assigned each leaf. # @return [Numo::DFloat] (shape: [n_leafs, n_outputs]) attr_reader :leaf_values # Create a new regressor with decision tree algorithm. # # @param criterion [String] The function to evaluate spliting point. Supported criteria are 'mae' and 'mse'. # @param max_depth [Integer] The maximum depth of the tree. # If nil is given, decision tree grows without concern for depth. # @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree. # If nil is given, number of leaves is not limited. # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node. # @param max_features [Integer] The number of features to consider when searching optimal split point. # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. def initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) super end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model. # @return [DecisionTreeRegressor] The learned regressor itself. def fit(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_target_value_array(y) ::Rumale::Validation.check_sample_size(x, y) n_samples, n_features = x.shape @params[:max_features] = n_features if @params[:max_features].nil? @params[:max_features] = [@params[:max_features], n_features].min @n_leaves = 0 @leaf_values = [] @feature_ids = Array.new(x.shape[1]) { |v| v } @sub_rng = @rng.dup build_tree(x, y) eval_importance(n_samples, n_features) @leaf_values = Numo::DFloat.cast(@leaf_values) @leaf_values = @leaf_values.flatten.dup if @leaf_values.shape[1] == 1 self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) @leaf_values.shape[1].nil? ? @leaf_values[apply(x)].dup : @leaf_values[apply(x), true].dup end private def build_tree(x, y) y = y.expand_dims(1).dup if y.shape[1].nil? @tree = grow_node(0, x, y, impurity(y)) nil end def put_leaf(node, y) node.probs = nil node.leaf = true node.leaf_id = @n_leaves @n_leaves += 1 @leaf_values.push(y.mean(0)) node end def best_split(f, y, impurity) find_split_params(@params[:criterion], impurity, f.sort_index, f, y) end def impurity(y) node_impurity(@params[:criterion], y) end end end end