Sha256: 12044052d2037fbb19637c6fb216b1c80c28664134453b9a0fc32fa2fe352c27
Contents?: true
Size: 1.4 KB
Versions: 64
Compression:
Stored size: 1.4 KB
Contents
/** * This is not the set of all possible signals. * * It IS, however, the set of all signals that trigger * an exit on either Linux or BSD systems. Linux is a * superset of the signal names supported on BSD, and * the unknown signals just fail to register, so we can * catch that easily enough. * * Windows signals are a different set, since there are * signals that terminate Windows processes, but don't * terminate (or don't even exist) on Posix systems. * * Don't bother with SIGKILL. It's uncatchable, which * means that we can't fire any callbacks anyway. * * If a user does happen to register a handler on a non- * fatal signal like SIGWINCH or something, and then * exit, it'll end up firing `process.emit('exit')`, so * the handler will be fired anyway. * * SIGBUS, SIGFPE, SIGSEGV and SIGILL, when not raised * artificially, inherently leave the process in a * state from which it is not safe to try and enter JS * listeners. */ export const signals = []; signals.push('SIGHUP', 'SIGINT', 'SIGTERM'); if (process.platform !== 'win32') { signals.push('SIGALRM', 'SIGABRT', 'SIGVTALRM', 'SIGXCPU', 'SIGXFSZ', 'SIGUSR2', 'SIGTRAP', 'SIGSYS', 'SIGQUIT', 'SIGIOT' // should detect profiler and enable/disable accordingly. // see #21 // 'SIGPROF' ); } if (process.platform === 'linux') { signals.push('SIGIO', 'SIGPOLL', 'SIGPWR', 'SIGSTKFLT'); } //# sourceMappingURL=signals.js.map
Version data entries
64 entries across 52 versions & 3 rubygems