# frozen_string_literal: true require 'rumale/linear_model/base_sgd' require 'rumale/base/regressor' module Rumale module LinearModel # Lasso is a class that implements Lasso Regression # with stochastic gradient descent (SGD) optimization. # # @example # estimator = # Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_values) # results = estimator.predict(testing_samples) # # *Reference* # - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. # - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009. # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010. class Lasso < BaseSGD include Base::Regressor # Return the weight vector. # @return [Numo::DFloat] (shape: [n_outputs, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept). # @return [Numo::DFloat] (shape: [n_outputs]) attr_reader :bias_term # Return the random generator for random sampling. # @return [Random] attr_reader :rng # Create a new Lasso regressor. # # @param learning_rate [Float] The initial value of learning rate. # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t). # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds. # If nil is given, the decay sets to 'reg_param * learning_rate'. # @param momentum [Float] The momentum factor. # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # @param batch_size [Integer] The size of the mini batches. # @param tol [Float] The tolerance of loss for terminating optimization. # @param n_jobs [Integer] The number of jobs for running the fit method in parallel. # If nil is given, the method does not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(learning_rate: 0.01, decay: nil, momentum: 0.9, reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4, n_jobs: nil, verbose: false, random_seed: nil) check_params_numeric(learning_rate: learning_rate, momentum: momentum, reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size, tol: tol) check_params_boolean(fit_bias: fit_bias, verbose: verbose) check_params_numeric_or_nil(decay: decay, n_jobs: n_jobs, random_seed: random_seed) check_params_positive(learning_rate: learning_rate, reg_param: reg_param, max_iter: max_iter, batch_size: batch_size) super() @params.merge!(method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h) @params[:decay] ||= @params[:reg_param] * @params[:learning_rate] @params[:random_seed] ||= srand @rng = Random.new(@params[:random_seed]) @penalty_type = L1_PENALTY @loss_func = LinearModel::Loss::MeanSquaredError.new @weight_vec = nil @bias_term = nil end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [Lasso] The learned regressor itself. def fit(x, y) x = check_convert_sample_array(x) y = check_convert_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] n_features = x.shape[1] if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) if enable_parallel? models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) } n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } else n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } end else @weight_vec, @bias_term = partial_fit(x, y) end self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) x = check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end end end end