module DNN # This class manages input datas and output datas together. class Iterator attr_reader :num_datas attr_reader :last_round_down # @param [Numo::SFloat | Array] x_datas input datas. # @param [Numo::SFloat | Array] y_datas output datas. # @param [Boolean] random Set true to return batches randomly. Setting false returns batches in order of index. # @param [Boolean] last_round_down Set true to round down for last batch data when call foreach. def initialize(x_datas, y_datas, random: true, last_round_down: false) @x_datas = x_datas @y_datas = y_datas @random = random @last_round_down = last_round_down @num_datas = x_datas.is_a?(Array) ? x_datas[0].shape[0] : x_datas.shape[0] reset end # Return the next batch. # @param [Integer] batch_size Required batch size. # @return [Array] Returns the mini batch in the form [x_batch, y_batch]. def next_batch(batch_size) raise DNNError, "This iterator has not next batch. Please call reset." unless has_next? if @indexes.length <= batch_size batch_indexes = @indexes @has_next = false else batch_indexes = @indexes.shift(batch_size) end get_batch(batch_indexes) end # Implement a process to get mini batch. # @param [Array] batch_indexes Index of batch to get. # @return [Array] Returns the mini batch in the form [x_batch, y_batch]. private def get_batch(batch_indexes) x_batch = if @x_datas.is_a?(Array) @x_datas.map { |datas| datas[batch_indexes, false] } else @x_datas[batch_indexes, false] end y_batch = if @y_datas.is_a?(Array) @y_datas.map { |datas| datas[batch_indexes, false] } else @y_datas[batch_indexes, false] end [x_batch, y_batch] end # Reset input datas and output datas. def reset @has_next = true @indexes = @num_datas.times.to_a @indexes.shuffle! if @random end # Return the true if has next batch. def has_next? @has_next end # Run a loop with all data separated by batch # @param [Integer] batch_size Batch size. # @yield Executes block by receiving the specified arguments (x_batch, y_batch). def foreach(batch_size, &block) steps = @last_round_down ? @num_datas / batch_size : (@num_datas.to_f / batch_size).ceil steps.times do |step| x_batch, y_batch = next_batch(batch_size) block.call(x_batch, y_batch, step) end reset end end end