#!/usr/bin/ruby $:.unshift(File.dirname(__FILE__)+'/../lib/') require 'statsample' samples=1000 variables=10 rng = GSL::Rng.alloc() f1=samples.times.collect {rng.ugaussian()}.to_scale f2=samples.times.collect {rng.ugaussian()}.to_scale f3=samples.times.collect {rng.ugaussian()}.to_scale vectors={} variables.times do |i| vectors["v#{i}"]=samples.times.collect {|nv| f1[nv]*(i-30)+f2[nv]*(i+30)+f3[nv]*(i+15) + rng.ugaussian() > 0 ? 1 : 0}.to_scale end ds=vectors.to_dataset pa=Statsample::Factor::ParallelAnalysis.new(ds, :iterations=>10, :matrix_method=>:tetrachoric_correlation_matrix, :debug=>true) pca=Statsample::Factor::PCA.new(Statsample::Bivariate.tetrachoric_correlation_matrix(ds)) rb=ReportBuilder.new(:name=>"Parallel Analysis with simulation") do |g| g.text("There are 3 real factors on data") g.parse_element(pca) g.text("Traditional Kaiser criterion (k>1) returns #{pca.m} factors") g.parse_element(pa) g.text("Parallel Analysis returns #{pa.number_of_factors} factors to preserve") end puts rb.to_text