// stdlib #include #include #include #include // fasttext #include #include #include #include #include #include // rice #include #include using fasttext::Args; using fasttext::FastText; using Rice::Array; using Rice::Constructor; using Rice::Module; using Rice::define_class_under; using Rice::define_module; using Rice::define_module_under; namespace Rice::detail { template<> class To_Ruby>> { public: VALUE convert(std::vector> const & x) { Array ret; for (const auto& v : x) { Array a; a.push(v.first); a.push(v.second); ret.push(a); } return ret; } }; } extern "C" void Init_ext() { Module rb_mFastText = define_module("FastText"); Module rb_mExt = define_module_under(rb_mFastText, "Ext"); define_class_under(rb_mExt, "Args") .define_constructor(Constructor()) .define_attr("input", &Args::input) .define_attr("output", &Args::output) .define_attr("lr", &Args::lr) .define_attr("lr_update_rate", &Args::lrUpdateRate) .define_attr("dim", &Args::dim) .define_attr("ws", &Args::ws) .define_attr("epoch", &Args::epoch) .define_attr("min_count", &Args::minCount) .define_attr("min_count_label", &Args::minCountLabel) .define_attr("neg", &Args::neg) .define_attr("word_ngrams", &Args::wordNgrams) .define_method( "loss=", [](Args& a, const std::string& str) { if (str == "softmax") { a.loss = fasttext::loss_name::softmax; } else if (str == "ns") { a.loss = fasttext::loss_name::ns; } else if (str == "hs") { a.loss = fasttext::loss_name::hs; } else if (str == "ova") { a.loss = fasttext::loss_name::ova; } else { throw std::invalid_argument("Unknown loss: " + str); } }) .define_method( "model=", [](Args& a, const std::string& str) { if (str == "supervised") { a.model = fasttext::model_name::sup; } else if (str == "skipgram") { a.model = fasttext::model_name::sg; } else if (str == "cbow") { a.model = fasttext::model_name::cbow; } else { throw std::invalid_argument("Unknown model: " + str); } }) .define_attr("bucket", &Args::bucket) .define_attr("minn", &Args::minn) .define_attr("maxn", &Args::maxn) .define_attr("thread", &Args::thread) .define_attr("t", &Args::t) .define_attr("label_prefix", &Args::label) .define_attr("verbose", &Args::verbose) .define_attr("pretrained_vectors", &Args::pretrainedVectors) .define_attr("save_output", &Args::saveOutput) .define_attr("seed", &Args::seed) .define_attr("autotune_validation_file", &Args::autotuneValidationFile) .define_attr("autotune_metric", &Args::autotuneMetric) .define_attr("autotune_predictions", &Args::autotunePredictions) .define_attr("autotune_duration", &Args::autotuneDuration) .define_attr("autotune_model_size", &Args::autotuneModelSize); define_class_under(rb_mExt, "Model") .define_constructor(Constructor()) .define_method( "words", [](FastText& m) { std::shared_ptr d = m.getDictionary(); std::vector freq = d->getCounts(fasttext::entry_type::word); Array vocab_list; Array vocab_freq; for (int32_t i = 0; i < d->nwords(); i++) { vocab_list.push(d->getWord(i)); vocab_freq.push(freq[i]); } Array ret; ret.push(vocab_list); ret.push(vocab_freq); return ret; }) .define_method( "labels", [](FastText& m) { std::shared_ptr d = m.getDictionary(); std::vector freq = d->getCounts(fasttext::entry_type::label); Array vocab_list; Array vocab_freq; for (int32_t i = 0; i < d->nlabels(); i++) { vocab_list.push(d->getLabel(i)); vocab_freq.push(freq[i]); } Array ret; ret.push(vocab_list); ret.push(vocab_freq); return ret; }) .define_method( "test", [](FastText& m, const std::string& filename, int32_t k) { std::ifstream ifs(filename); if (!ifs.is_open()) { throw std::invalid_argument("Test file cannot be opened!"); } fasttext::Meter meter(false); m.test(ifs, k, 0.0, meter); ifs.close(); Array ret; ret.push(meter.nexamples()); ret.push(meter.precision()); ret.push(meter.recall()); return ret; }) .define_method( "load_model", [](FastText& m, const std::string& s) { m.loadModel(s); }) .define_method( "save_model", [](FastText& m, const std::string& s) { m.saveModel(s); }) .define_method("dimension", &FastText::getDimension) .define_method("quantized?", &FastText::isQuant) .define_method("word_id", &FastText::getWordId) .define_method("subword_id", &FastText::getSubwordId) .define_method( "predict", [](FastText& m, const std::string& text, int32_t k, float threshold) { std::stringstream ioss(text); std::vector> predictions; m.predictLine(ioss, predictions, k, threshold); return predictions; }) .define_method( "nearest_neighbors", [](FastText& m, const std::string& word, int32_t k) { return m.getNN(word, k); }) .define_method("analogies", &FastText::getAnalogies) // .define_method("ngram_vectors", &FastText::getNgramVectors) .define_method( "word_vector", [](FastText& m, const std::string& word) { auto dimension = m.getDimension(); fasttext::Vector vec = fasttext::Vector(dimension); m.getWordVector(vec, word); Array ret; for (size_t i = 0; i < vec.size(); i++) { ret.push(vec[i]); } return ret; }) .define_method( "subwords", [](FastText& m, const std::string& word) { std::vector subwords; std::vector ngrams; std::shared_ptr d = m.getDictionary(); d->getSubwords(word, ngrams, subwords); Array ret; for (const auto& subword : subwords) { ret.push(subword); } return ret; }) .define_method( "sentence_vector", [](FastText& m, const std::string& text) { std::istringstream in(text); auto dimension = m.getDimension(); fasttext::Vector vec = fasttext::Vector(dimension); m.getSentenceVector(in, vec); Array ret; for (size_t i = 0; i < vec.size(); i++) { ret.push(vec[i]); } return ret; }) .define_method( "train", [](FastText& m, Args& a) { if (a.hasAutotune()) { fasttext::Autotune autotune(std::shared_ptr(&m, [](fasttext::FastText*) {})); autotune.train(a); } else { m.train(a); } }) .define_method( "quantize", [](FastText& m, Args& a) { m.quantize(a); }) .define_method( "supervised?", [](FastText& m) { return m.getArgs().model == fasttext::model_name::sup; }) .define_method( "label_prefix", [](FastText& m) { return m.getArgs().label; }); }