require 'test_helper' class MultifitTest < GSL::TestCase def _test_lmder(fdf, x, xx, f, cov) s = GSL::MultiFit::FdfSolver.alloc('lmsder', fdf.n, fdf.p) s.set(fdf, x) 20.times { |i| s.iterate fdf.p.times { |j| assert_rel s.x[j], xx[fdf.p * i + j], 1e-5, "lmsder, iter=#{i}, x#{j}" } assert_rel GSL::Blas.dnrm2(s.f), f[i], 1e-5, "lmsder, iter=#{i}, f" } covar = s.covar(0.0) fdf.p.times { |i| fdf.p.times { |j| assert_rel covar[i, j], cov[i * fdf.p + j], 1e-7, "gsl_multifit_covar cov(#{i},#{j})" } } end def _test_fdf(name, fdf, x, x_final, f_sumsq, sigma) s = GSL::MultiFit::FdfSolver.alloc('lmsder', fdf.n, fdf.p) s.set(fdf, x) 1000.times { s.iterate status = s.test_delta(0.0, 1e-7) break if status != GSL::CONTINUE } covar = s.covar(0.0) fdf.p.times { |i| assert_rel s.x[i], x_final[i], 1e-5, "#{name}, lmsder, x#{i}" } s2 = GSL.pow(GSL::Blas.dnrm2(s.f), 2.0) assert_rel s2, f_sumsq, 1e-5, "#{name}, lmsder, |f|^2" fdf.p.times { |i| ei = Math.sqrt(s2 / (fdf.n - fdf.p)) * Math.sqrt(covar[i, i]) assert_rel ei, sigma[i], 1e-4, "#{name}, sigma(#{i})" } end def test_2dgauss maxiter = 10 n = 33 point = Struct.new(:x, :y) # model: a * exp(-((x - x0) ** 2 + (y - y0) ** 2) / 2 / sigma ** 2) gauss_f = lambda { |x, t, y, s, f| # x: parameters as a Vecor # t: observed points as an Array # y: observed data as a GSL::Vector # s: errorbar # f: result a = x[0] x0 = x[1] y0 = x[2] sigma2 = x[3] ** 2 y.size.times { |i| f.set(i, (a * Math.exp(-((t[i].x - x0) ** 2 + (t[i].y - y0) ** 2) / 2 / sigma2) - y[i]) / s[i]) } GSL::SUCCESS } gauss_df = lambda { |x, t, y, s, df| a = x[0] x0 = x[1] y0 = x[2] sigma = x[3] sigma2 = sigma ** 2 y.size.times { |i| dx = t[i].x - x0; dx2 = dx ** 2 dy = t[i].y - y0; dy2 = dy ** 2 f = a * Math.exp(-(dx2 + dy2) / 2 / sigma2) df.set(i, 0, f / a / s[i]) df.set(i, 1, f * dx / sigma2 / s[i]) df.set(i, 2, f * dy / sigma2 / s[i]) df.set(i, 3, f * (dx2 + dy2) / sigma2 / sigma / s[i]) } GSL::SUCCESS } # goal xgoal = GSL::Vector.alloc([1, 0, 0, 1]) parname = %w[a x0 y0 si] # data t = [] tmin = -10.0 tmax = 10.0 n.times { |j| n.times { |i| t << point.new(tmin + (tmax - tmin) * i / (n - 1), tmin + (tmax - tmin) * j / (n - 1)) } } stdev = xgoal[0] * 0.1 s = GSL::Vector.alloc(Array.new(t.size, stdev)) # error bar of each datum r = GSL::Rng.alloc e = GSL::Vector.alloc(t.size) t.size.times { |i| e[i] = -r.gaussian(stdev) # perturbation to data } y = GSL::Vector.alloc(t.size) n = GSL::Vector.alloc(Array.new(t.size, 1.0)) gauss_f.call(xgoal, t, e, n, y) # data: y = model - e # fitting x = GSL::Vector.alloc([0.5, 0.1, -0.1, 2.0]) # initial guess fdf = GSL::MultiFit::Function_fdf.alloc(gauss_f, gauss_df, x.size) fdf.set_data(t, y, s) solver = GSL::MultiFit::FdfSolver.alloc(GSL::MultiFit::FdfSolver::LMSDER, t.size, x.size) solver.set(fdf, x) #solver.print_state(0) maxiter.times { |i| solver.iterate status = solver.test_delta(1e-6, 1e-6) #solver.print_state(i + 1) break if status != GSL::CONTINUE } # results covar = solver.covar(0.0) xresult = solver.position dof = t.size - xresult.size chi2 = GSL.pow_2(solver.f.dnrm2) xsigma = GSL::Vector.alloc(xresult.size) xresult.size.times { |i| xsigma[i] = Math.sqrt(chi2 / dof * covar[i, i]) * 2.0 # allow resulting parameters to differ two times than standard error } desc = "a*exp(-((x-x0)**2+(y-y0)**2)/2/si**2), chi2/N:%.3g" % (chi2 / t.size) xresult.size.times { |i| assert_rel xresult[i], xgoal[i], xsigma[i], '%s: %-2.2s' % [desc, parname[i]] refute((xresult[i] - xgoal[i]).abs > xsigma[i], '%s: %-2.2s is %s +- %s' % [desc, parname[i], xresult[i], xsigma[i]]) } end def test_brown brown_N = 20 brown_P = 4 brown_X = GSL::Matrix.alloc( [24.3485677, 4.71448798, -2.19486633, 2.69405755], [22.4116222, 3.93075538, -1.42344852, 2.5233557], [17.88886, 2.9290853, 0.125174936, -3.96823353], [17.3237176, 2.99606803, 2.03285653, 2.28992327], [17.0906508, 3.02485425, 0.296995153, 0.0876226126], [16.578006, 3.1036312, -0.18617941, 0.103262914], [15.692993, 3.33088442, 0.0706406887, 1.05923955], [14.3232177, 3.85604218, -2.3762839, -3.09486813], [14.1279266, 3.97896121, 0.446109351, 1.40023753], [13.6081961, 4.16435075, -1.51250057, -1.52510626], [13.4295245, 4.22697223, -0.196985195, 0.532009293], [13.0176117, 4.3579261, -0.353131208, 0.301377627], [12.2713535, 4.62398535, -0.00183585584, 0.894170703], [11.0316144, 5.13967727, -2.38978772, -2.89510064], [10.8807981, 5.24558004, 0.230495952, 1.27315117], [10.4029264, 5.41141257, -1.5116632, -1.47615921], [10.2574435, 5.46211045, -0.299855732, 0.451893162], [9.87863876, 5.57914292, -0.368885288, 0.358086545], [9.1894983, 5.82082741, -0.230157969, 0.621476534], [8.00589008, 6.27788753, -1.46022815, -1.33468082] ) brown_F = GSL::Vector.alloc( 2474.05541, 1924.69004, 1280.63194, 1244.81867, 1190.53739, 1159.34935, 1108.44426, 1090.11073, 1015.92942, 1002.43533, 971.221084, 949.589435, 911.359899, 906.522994, 840.525729, 833.950164, 807.557511, 791.00924, 761.09598, 726.787783 ) brown_cov = GSL::Matrix.alloc( [ 1.8893186910e-01, -4.7099989571e-02, 5.2154168404e-01, 1.6608168209e-02], [-4.7099989571e-02, 1.1761534388e-02, -1.2987843074e-01, -4.1615942391e-03], [ 5.2154168404e-01, -1.2987843074e-01, 1.4653936514e+00, 1.5738321686e-02], [ 1.6608168209e-02, -4.1615942391e-03, 1.5738321686e-02, 4.2348042340e-02] ) brown_x0 = GSL::Vector.alloc(25, 5, -5, -1) brown_f = lambda { |x, t, y, f| brown_N.times { |i| ti = 0.2 * (i + 1) ui = x[0] + x[1] * ti - Math.exp(ti) vi = x[2] + x[3] * Math.sin(ti) - Math.cos(ti) f[i] = ui * ui + vi * vi } GSL::SUCCESS } brown_df = lambda { |x, t, y, df| brown_N.times { |i| ti = 0.2 * (i + 1) ui = x[0] + x[1] * ti - Math.exp(ti) vi = x[2] + x[3] * Math.sin(ti) - Math.cos(ti) df.set(i, 0, 2.0 * ui) df.set(i, 1, 2.0 * ui * ti) df.set(i, 2, 2.0 * vi) df.set(i, 3, 2.0 * vi * Math.sin(ti)) } GSL::SUCCESS } fdf = GSL::MultiFit::Function_fdf.alloc(brown_f, brown_df, brown_P) fdf.set_data(GSL::Vector.alloc(brown_N), GSL::Vector.alloc(brown_N)) _test_lmder(fdf, brown_x0, brown_X.vector_view, brown_F, brown_cov.vector_view) end def test_enso enso_N = 168 enso_P = 9 enso_x0 = GSL::Vector.alloc(10.0, 3.0, 0.5, 44.0, -1.5, 0.5, 26.0, 0.1, 1.5) enso_x = GSL::Vector.alloc( 1.0510749193E+01, 3.0762128085E+00, 5.3280138227E-01, 4.4311088700E+01, -1.6231428586E+00, 5.2554493756E-01, 2.6887614440E+01, 2.1232288488E-01, 1.4966870418E+00 ) enso_sumsq = 7.8853978668E+02 enso_sigma = GSL::Vector.alloc( 1.7488832467E-01, 2.4310052139E-01, 2.4354686618E-01, 9.4408025976E-01, 2.8078369611E-01, 4.8073701119E-01, 4.1612939130E-01, 5.1460022911E-01, 2.5434468893E-01 ) enso_F = GSL::Vector.alloc( 12.90000, 11.30000, 10.60000, 11.20000, 10.90000, 7.50000, 7.70000, 11.70000, 12.90000, 14.30000, 10.90000, 13.70000, 17.10000, 14.00000, 15.30000, 8.50000, 5.70000, 5.50000, 7.60000, 8.60000, 7.30000, 7.60000, 12.70000, 11.00000, 12.70000, 12.90000, 13.00000, 10.90000, 10.40000, 10.20000, 8.00000, 10.90000, 13.60000, 10.50000, 9.20000, 12.40000, 12.70000, 13.30000, 10.10000, 7.80000, 4.80000, 3.00000, 2.50000, 6.30000, 9.70000, 11.60000, 8.60000, 12.40000, 10.50000, 13.30000, 10.40000, 8.10000, 3.70000, 10.70000, 5.10000, 10.40000, 10.90000, 11.70000, 11.40000, 13.70000, 14.10000, 14.00000, 12.50000, 6.30000, 9.60000, 11.70000, 5.00000, 10.80000, 12.70000, 10.80000, 11.80000, 12.60000, 15.70000, 12.60000, 14.80000, 7.80000, 7.10000, 11.20000, 8.10000, 6.40000, 5.20000, 12.00000, 10.20000, 12.70000, 10.20000, 14.70000, 12.20000, 7.10000, 5.70000, 6.70000, 3.90000, 8.50000, 8.30000, 10.80000, 16.70000, 12.60000, 12.50000, 12.50000, 9.80000, 7.20000, 4.10000, 10.60000, 10.10000, 10.10000, 11.90000, 13.60000, 16.30000, 17.60000, 15.50000, 16.00000, 15.20000, 11.20000, 14.30000, 14.50000, 8.50000, 12.00000, 12.70000, 11.30000, 14.50000, 15.10000, 10.40000, 11.50000, 13.40000, 7.50000, 0.60000, 0.30000, 5.50000, 5.00000, 4.60000, 8.20000, 9.90000, 9.20000, 12.50000, 10.90000, 9.90000, 8.90000, 7.60000, 9.50000, 8.40000, 10.70000, 13.60000, 13.70000, 13.70000, 16.50000, 16.80000, 17.10000, 15.40000, 9.50000, 6.10000, 10.10000, 9.30000, 5.30000, 11.20000, 16.60000, 15.60000, 12.00000, 11.50000, 8.60000, 13.80000, 8.70000, 8.60000, 8.60000, 8.70000, 12.80000, 13.20000, 14.00000, 13.40000, 14.80000 ) enso_f = lambda { |x, t, y, f| b = x enso_N.times { |i| ti, pi = t[i], GSL::M_PI yy = b[0] yy += b[1] * Math.cos(2.0 * pi * ti / 12) yy += b[2] * Math.sin(2.0 * pi * ti / 12) yy += b[4] * Math.cos(2.0 * pi * ti / b[3]) yy += b[5] * Math.sin(2.0 * pi * ti / b[3]) yy += b[7] * Math.cos(2.0 * pi * ti / b[6]) yy += b[8] * Math.sin(2.0 * pi * ti / b[6]) f[i] = y[i] - yy } GSL::SUCCESS } enso_df = lambda { |x, t, y, df| b = x enso_N.times { |i| ti, pi = t[i], GSL::M_PI df.set(i, 0, -1.0) df.set(i, 1, -Math.cos(2.0 * pi * ti / 12)) df.set(i, 2, -Math.sin(2.0 * pi * ti / 12)) df.set(i, 3, -b[4] * (2.0 * pi * ti / (b[3] * b[3])) * Math.sin(2 * pi * ti / b[3]) + b[5] * (2 * pi * ti / (b[3] * b[3])) * Math.cos(2 * pi * ti / b[3])) df.set(i, 4, -Math.cos(2 * pi * ti / b[3])) df.set(i, 5, -Math.sin(2 * pi * ti / b[3])) df.set(i, 6, -b[7] * (2 * pi * ti / (b[6] * b[6])) * Math.sin(2 * pi * ti / b[6]) + b[8] * (2 * pi * ti / (b[6] * b[6])) * Math.cos(2 * pi * ti / b[6])) df.set(i, 7, -Math.cos(2 * pi * ti / b[6])) df.set(i, 8, -Math.sin(2 * pi * ti / b[6])) } GSL::SUCCESS } fdf = GSL::MultiFit::Function_fdf.alloc(enso_f, enso_df, enso_P) #fdf.set_data(GSL::Vector.alloc(1..168), enso_F) fdf.set_data(GSL::Vector.indgen(168, 1), enso_F) _test_fdf('nist-ENSO', fdf, enso_x0, enso_x, enso_sumsq, enso_sigma) end def test_filip filip_n = 82 filip_p = 11 filip_x = GSL::Vector.alloc( -6.860120914, -4.324130045, -4.358625055, -4.358426747, -6.955852379, -6.661145254, -6.355462942, -6.118102026, -7.115148017, -6.815308569, -6.519993057, -6.204119983, -5.853871964, -6.109523091, -5.79832982, -5.482672118, -5.171791386, -4.851705903, -4.517126416, -4.143573228, -3.709075441, -3.499489089, -6.300769497, -5.953504836, -5.642065153, -5.031376979, -4.680685696, -4.329846955, -3.928486195, -8.56735134, -8.363211311, -8.107682739, -7.823908741, -7.522878745, -7.218819279, -6.920818754, -6.628932138, -6.323946875, -5.991399828, -8.781464495, -8.663140179, -8.473531488, -8.247337057, -7.971428747, -7.676129393, -7.352812702, -7.072065318, -6.774174009, -6.478861916, -6.159517513, -6.835647144, -6.53165267, -6.224098421, -5.910094889, -5.598599459, -5.290645224, -4.974284616, -4.64454848, -4.290560426, -3.885055584, -3.408378962, -3.13200249, -8.726767166, -8.66695597, -8.511026475, -8.165388579, -7.886056648, -7.588043762, -7.283412422, -6.995678626, -6.691862621, -6.392544977, -6.067374056, -6.684029655, -6.378719832, -6.065855188, -5.752272167, -5.132414673, -4.811352704, -4.098269308, -3.66174277, -3.2644011 ) filip_y = GSL::Vector.alloc( 0.8116, 0.9072, 0.9052, 0.9039, 0.8053, 0.8377, 0.8667, 0.8809, 0.7975, 0.8162, 0.8515, 0.8766, 0.8885, 0.8859, 0.8959, 0.8913, 0.8959, 0.8971, 0.9021, 0.909, 0.9139, 0.9199, 0.8692, 0.8872, 0.89, 0.891, 0.8977, 0.9035, 0.9078, 0.7675, 0.7705, 0.7713, 0.7736, 0.7775, 0.7841, 0.7971, 0.8329, 0.8641, 0.8804, 0.7668, 0.7633, 0.7678, 0.7697, 0.77, 0.7749, 0.7796, 0.7897, 0.8131, 0.8498, 0.8741, 0.8061, 0.846, 0.8751, 0.8856, 0.8919, 0.8934, 0.894, 0.8957, 0.9047, 0.9129, 0.9209, 0.9219, 0.7739, 0.7681, 0.7665, 0.7703, 0.7702, 0.7761, 0.7809, 0.7961, 0.8253, 0.8602, 0.8809, 0.8301, 0.8664, 0.8834, 0.8898, 0.8964, 0.8963, 0.9074, 0.9119, 0.9228 ) work = GSL::MultiFit::Workspace.alloc(filip_n, filip_p) expected_c = GSL::Vector.alloc( -1467.48961422980, -2772.17959193342, -2316.37108160893, -1127.97394098372, -354.478233703349, -75.1242017393757, -10.8753180355343, -1.06221498588947, -0.670191154593408e-01, -0.246781078275479e-02, -0.402962525080404e-04 ) expected_sd = GSL::Vector.alloc( 298.084530995537, 559.779865474950, 466.477572127796, 227.204274477751, 71.6478660875927, 15.2897178747400, 2.23691159816033, 0.221624321934227, 0.142363763154724e-01, 0.535617408889821e-03, 0.896632837373868e-05 ) expected_chisq = 0.795851382172941e-03 xx = GSL::Matrix.alloc(filip_n, filip_p) filip_n.times { |i| filip_p.times { |j| xx.set(i, j, GSL.pow(filip_x[i], j)) } } c, cov, chisq, _ = GSL::MultiFit.linear(xx, filip_y, work) assert_rel c[0], expected_c[0], 1e-7, 'filip gsl_fit_multilinear c0' assert_rel c[1], expected_c[1], 1e-7, 'filip gsl_fit_multilinear c1' assert_rel c[2], expected_c[2], 1e-7, 'filip gsl_fit_multilinear c2' assert_rel c[3], expected_c[3], 1e-7, 'filip gsl_fit_multilinear c3' assert_rel c[4], expected_c[4], 1e-7, 'filip gsl_fit_multilinear c4' assert_rel c[5], expected_c[5], 1e-7, 'filip gsl_fit_multilinear c5' assert_rel c[6], expected_c[6], 1e-7, 'filip gsl_fit_multilinear c6' assert_rel c[7], expected_c[7], 1e-7, 'filip gsl_fit_multilinear c7' assert_rel c[8], expected_c[8], 1e-7, 'filip gsl_fit_multilinear c8' assert_rel c[9], expected_c[9], 1e-7, 'filip gsl_fit_multilinear c9' assert_rel c[10], expected_c[10], 1e-7, 'filip gsl_fit_multilinear c10' diag = cov.diagonal assert_rel diag[0], GSL.pow(expected_sd[0],2.0), 1e-6, 'filip gsl_fit_multilinear cov00' assert_rel diag[1], GSL.pow(expected_sd[1],2.0), 1e-6, 'filip gsl_fit_multilinear cov11' assert_rel diag[2], GSL.pow(expected_sd[2],2.0), 1e-6, 'filip gsl_fit_multilinear cov22' assert_rel diag[3], GSL.pow(expected_sd[3],2.0), 1e-6, 'filip gsl_fit_multilinear cov33' assert_rel diag[4], GSL.pow(expected_sd[4],2.0), 1e-6, 'filip gsl_fit_multilinear cov44' assert_rel diag[5], GSL.pow(expected_sd[5],2.0), 1e-6, 'filip gsl_fit_multilinear cov55' assert_rel diag[6], GSL.pow(expected_sd[6],2.0), 1e-6, 'filip gsl_fit_multilinear cov66' assert_rel diag[7], GSL.pow(expected_sd[7],2.0), 1e-6, 'filip gsl_fit_multilinear cov77' assert_rel diag[8], GSL.pow(expected_sd[8],2.0), 1e-6, 'filip gsl_fit_multilinear cov88' assert_rel diag[9], GSL.pow(expected_sd[9],2.0), 1e-6, 'filip gsl_fit_multilinear cov99' assert_rel diag[10], GSL.pow(expected_sd[10],2.0), 1e-6, 'filip gsl_fit_multilinear cov1010' assert_rel chisq, expected_chisq, 1e-7, 'filip gsl_fit_multilinear chisq' expected_c = GSL::Vector.alloc( -1467.48961422980, -2772.17959193342, -2316.37108160893, -1127.97394098372, -354.478233703349, -75.1242017393757, -10.8753180355343, -1.06221498588947, -0.670191154593408e-01, -0.246781078275479e-02, -0.402962525080404e-04 ) expected_cov = GSL::Matrix.alloc( [ 7.9269341767252183262588583867942e9, 1.4880416622254098343441063389706e10, 1.2385811858111487905481427591107e10, 6.0210784406215266653697715794241e9, 1.8936652526181982747116667336389e9, 4.0274900618493109653998118587093e8, 5.8685468011819735806180092394606e7, 5.7873451475721689084330083708901e6, 3.6982719848703747920663262917032e5, 1.3834818802741350637527054170891e4, 2.301758578713219280719633494302e2 ], [ 1.4880416622254098334697515488559e10, 2.7955091668548290835529555438088e10, 2.3286604504243362691678565997033e10, 1.132895006796272983689297219686e10, 3.5657281653312473123348357644683e9, 7.5893300392314445528176646366087e8, 1.1066654886143524811964131660002e8, 1.0921285448484575110763947787775e7, 6.9838139975394769253353547606971e5, 2.6143091775349597218939272614126e4, 4.3523386330348588614289505633539e2 ], [ 1.2385811858111487890788272968677e10, 2.3286604504243362677757802422747e10, 1.9412787917766676553608636489674e10, 9.4516246492862131849077729250098e9, 2.9771226694709917550143152097252e9, 6.3413035086730038062129508949859e8, 9.2536164488309401636559552742339e7, 9.1386304643423333815338760248027e6, 5.8479478338916429826337004060941e5, 2.1905933113294737443808429764554e4, 3.6493161325305557266196635180155e2 ], [ 6.0210784406215266545770691532365e9, 1.1328950067962729823273441573365e10, 9.4516246492862131792040001429636e9, 4.6053152992000107509329772255094e9, 1.4517147860312147098138030287038e9, 3.0944988323328589376402579060072e8, 4.5190223822292688669369522708712e7, 4.4660958693678497534529855690752e6, 2.8599340736122198213681258676423e5, 1.0720394998549386596165641244705e4, 1.7870937745661967319298031044424e2 ], [ 1.8936652526181982701620450132636e9, 3.5657281653312473058825073094524e9, 2.9771226694709917514149924058297e9, 1.451714786031214708936087401632e9, 4.5796563896564815123074920050827e8, 9.7693972414561515534525103622773e7, 1.427717861635658545863942948444e7, 1.4120161287735817621354292900338e6, 9.0484361228623960006818614875557e4, 3.394106783764852373199087455398e3, 5.6617406468519495376287407526295e1 ], [ 4.0274900618493109532650887473599e8, 7.589330039231444534478894935778e8, 6.3413035086730037947153564986653e8, 3.09449883233285893390542947998e8, 9.7693972414561515475770399055121e7, 2.0855726248311948992114244257719e7, 3.0501263034740400533872858749566e6, 3.0187475839310308153394428784224e5, 1.9358204633534233524477930175632e4, 7.2662989867560017077361942813911e2, 1.2129002231061036467607394277965e1 ], [ 5.868546801181973559370854830868e7, 1.1066654886143524778548044386795e8, 9.2536164488309401413296494869777e7, 4.5190223822292688587853853162072e7, 1.4277178616356585441556046753562e7, 3.050126303474040051574715592746e6, 4.4639982579046340884744460329946e5, 4.4212093985989836047285007760238e4, 2.8371395028774486687625333589972e3, 1.0656694507620102300567296504381e2, 1.7799982046359973175080475654123e0 ], [ 5.7873451475721688839974153925406e6, 1.0921285448484575071271480643397e7, 9.1386304643423333540728480344578e6, 4.4660958693678497427674903565664e6, 1.4120161287735817596182229182587e6, 3.0187475839310308117812257613082e5, 4.4212093985989836021482392757677e4, 4.3818874017028389517560906916315e3, 2.813828775753142855163154605027e2, 1.0576188138416671883232607188969e1, 1.7676976288918295012452853715408e-1 ], [ 3.6982719848703747742568351456818e5, 6.9838139975394768959780068745979e5, 5.8479478338916429616547638954781e5, 2.8599340736122198128717796825489e5, 9.0484361228623959793493985226792e4, 1.9358204633534233490579641064343e4, 2.8371395028774486654873647731797e3, 2.8138287757531428535592907878017e2, 1.8081118503579798222896804627964e1, 6.8005074291434681866415478598732e-1, 1.1373581557749643543869665860719e-2 ], [ 1.3834818802741350562839757244708e4, 2.614309177534959709397445440919e4, 2.1905933113294737352721470167247e4, 1.0720394998549386558251721913182e4, 3.3941067837648523632905604575131e3, 7.2662989867560016909534954790835e2, 1.0656694507620102282337905013451e2, 1.0576188138416671871337685672492e1, 6.8005074291434681828743281967838e-1, 2.5593857187900736057022477529078e-2, 4.2831487599116264442963102045936e-4 ], [ 2.3017585787132192669801658674163e2, 4.3523386330348588381716460685124e2, 3.6493161325305557094116270974735e2, 1.7870937745661967246233792737255e2, 5.6617406468519495180024059284629e1, 1.2129002231061036433003571679329e1, 1.7799982046359973135014027410646e0, 1.7676976288918294983059118597214e-1, 1.137358155774964353146460100337e-2, 4.283148759911626442000316269063e-4, 7.172253875245080423800933453952e-6 ] ) expected_chisq = 0.795851382172941E-03 filip_n.times { |i| filip_p.times { |j| xx.set(i, j, GSL.pow(filip_x[i], j)) } } w = GSL::Vector.alloc(filip_n) w.set_all(1.0) c, cov, _, _ = GSL::MultiFit.wlinear(xx, w, filip_y, work) filip_p.times { |i| assert_rel c[i], expected_c[i], 1e-7, "filip gsl_fit_multilinear c#{i}" } filip_p.times { |i| filip_p.times { |j| assert_rel cov[i, j], expected_cov[i, j], 1e-6, "filip gsl_fit_wmultilinear cov(#{i},#{j})" } } end def test_gauss maxiter = 10 n = 1000 # model: a * exp(-(x - x0) ** 2 / 2 / sigma ** 2) gauss_p = 3 gauss_f = lambda { |x, t, y, s, f| # x: parameters as a Vecor # t: observed points as a GSL::Vector # y: observed data as a GSL::Vector # s: errorbar # f: result a = x[0] x0 = x[1] sigma2 = x[2] ** 2 y.size.times { |i| f.set(i, (a * Math.exp(-(t[i] - x0) ** 2 / 2 / sigma2) - y[i]) / s[i]) } GSL::SUCCESS } gauss_df = lambda { |x, t, y, s, df| a = x[0] x0 = x[1] sigma = x[2] sigma2 = sigma ** 2 y.size.times { |i| dx = t[i] - x0 dx2 = dx ** 2 f = a * Math.exp(-dx2 / 2 / sigma2) df.set(i, 0, f / a / s[i]) df.set(i, 1, f * dx / sigma2 / s[i]) df.set(i, 2, f * dx2 / sigma2 / sigma / s[i]) } GSL::SUCCESS } # goal xgoal = GSL::Vector.alloc([1, 0, 1]) parname = %w[a x0 si] # data t = GSL::Vector.alloc(n) # positions of data tmin = -10.0 tmax = 10.0 t.size.times { |i| t[i] = tmin + (tmax - tmin) * i / (n - 1) } stdev = xgoal[0] * 0.1 s = GSL::Vector.alloc(Array.new(t.size, stdev)) # error bar of each datum r = GSL::Rng.alloc e = GSL::Vector.alloc(t.size) t.size.times { |i| e[i] = -r.gaussian(stdev) # perturbation to data } y = GSL::Vector.alloc(t.size) n = GSL::Vector.alloc(Array.new(t.size, 1.0)) gauss_f.call(xgoal, t, e, n, y) # data: y = model - e # fitting x = GSL::Vector.alloc([0.5, 0.1, 2]) # initial guess fdf = GSL::MultiFit::Function_fdf.alloc(gauss_f, gauss_df, gauss_p) fdf.set_data(t, y, s) solver = GSL::MultiFit::FdfSolver.alloc(GSL::MultiFit::FdfSolver::LMSDER, t.size, gauss_p) solver.set(fdf, x) #solver.print_state(0) maxiter.times { |i| solver.iterate status = solver.test_delta(1e-6, 1e-6) #solver.print_state(i + 1) break if status != GSL::CONTINUE } # results covar = solver.covar(0.0) xresult = solver.position dof = t.size - gauss_p chi2 = GSL.pow_2(solver.f.dnrm2) xsigma = GSL::Vector.alloc(xresult.size) xresult.size.times { |i| xsigma[i] = Math.sqrt(chi2 / dof * covar[i, i]) * 2.0 # resulting parameters to differ two times than standard error } desc = 'a*exp(-(x-x0)**2/2/si**2), chi2/N:%.3g' % (chi2 / t.size) xresult.size.times { |i| assert_rel xresult[i], xgoal[i], xsigma[i], '%s: %-2.2s' % [desc, parname[i]] refute((xresult[i] - xgoal[i]).abs > xsigma[i], desc) } end def test_longley longley_n = 16 longley_p = 7 longley_x = GSL::Vector.alloc( 1, 83.0, 234289, 2356, 1590, 107608, 1947, 1, 88.5, 259426, 2325, 1456, 108632, 1948, 1, 88.2, 258054, 3682, 1616, 109773, 1949, 1, 89.5, 284599, 3351, 1650, 110929, 1950, 1, 96.2, 328975, 2099, 3099, 112075, 1951, 1, 98.1, 346999, 1932, 3594, 113270, 1952, 1, 99.0, 365385, 1870, 3547, 115094, 1953, 1, 100.0, 363112, 3578, 3350, 116219, 1954, 1, 101.2, 397469, 2904, 3048, 117388, 1955, 1, 104.6, 419180, 2822, 2857, 118734, 1956, 1, 108.4, 442769, 2936, 2798, 120445, 1957, 1, 110.8, 444546, 4681, 2637, 121950, 1958, 1, 112.6, 482704, 3813, 2552, 123366, 1959, 1, 114.2, 502601, 3931, 2514, 125368, 1960, 1, 115.7, 518173, 4806, 2572, 127852, 1961, 1, 116.9, 554894, 4007, 2827, 130081, 1962 ) longley_y = GSL::Vector.alloc( 60323, 61122, 60171, 61187, 63221, 63639, 64989, 63761, 66019, 67857, 68169, 66513, 68655, 69564, 69331, 70551 ) work = GSL::MultiFit::Workspace.alloc(longley_n, longley_p) x = GSL::Matrix.alloc(longley_x, longley_n, longley_p).view y = longley_y.view expected_c = GSL::Vector.alloc( -3482258.63459582, 15.0618722713733, -0.358191792925910e-01, -2.02022980381683, -1.03322686717359, -0.511041056535807e-01, 1829.15146461355 ) expected_sd = GSL::Vector.alloc( 890420.383607373, 84.9149257747669, 0.334910077722432e-01, 0.488399681651699, 0.214274163161675, 0.226073200069370, 455.478499142212 ) expected_chisq = 836424.055505915 c, cov, chisq, _ = GSL::MultiFit.linear(x, y, work) 7.times { |i| assert_rel c[i], expected_c[i], 1e-10, "longley gsl_fit_multilinear c#{i}" } diag = cov.diagonal assert_rel diag[0], GSL.pow(expected_sd[0],2.0), 1e-10, 'longley gsl_fit_multilinear cov00' assert_rel diag[1], GSL.pow(expected_sd[1],2.0), 1e-10, 'longley gsl_fit_multilinear cov11' assert_rel diag[2], GSL.pow(expected_sd[2],2.0), 1e-10, 'longley gsl_fit_multilinear cov22' assert_rel diag[3], GSL.pow(expected_sd[3],2.0), 1e-10, 'longley gsl_fit_multilinear cov33' assert_rel diag[4], GSL.pow(expected_sd[4],2.0), 1e-10, 'longley gsl_fit_multilinear cov44' assert_rel diag[5], GSL.pow(expected_sd[5],2.0), 1e-10, 'longley gsl_fit_multilinear cov55' assert_rel diag[6], GSL.pow(expected_sd[6],2.0), 1e-10, 'longley gsl_fit_multilinear cov66' assert_rel chisq, expected_chisq, 1e-10, 'longley gsl_fit_multilinear chisq' expected_cov = GSL::Matrix.alloc( [ 8531122.56783558, -166.727799925578, 0.261873708176346, 3.91188317230983, 1.1285582054705, -0.889550869422687, -4362.58709870581 ], [ -166.727799925578, 0.0775861253030891, -1.98725210399982e-05, -0.000247667096727256, -6.82911920718824e-05, 0.000136160797527761, 0.0775255245956248 ], [ 0.261873708176346, -1.98725210399982e-05, 1.20690316701888e-08, 1.66429546772984e-07, 3.61843600487847e-08, -6.78805814483582e-08, -0.00013158719037715 ], [ 3.91188317230983, -0.000247667096727256, 1.66429546772984e-07, 2.56665052544717e-06, 6.96541409215597e-07, -9.00858307771567e-07, -0.00197260370663974 ], [ 1.1285582054705, -6.82911920718824e-05, 3.61843600487847e-08, 6.96541409215597e-07, 4.94032602583969e-07, -9.8469143760973e-08, -0.000576921112208274 ], [ -0.889550869422687, 0.000136160797527761, -6.78805814483582e-08, -9.00858307771567e-07, -9.8469143760973e-08, 5.49938542664952e-07, 0.000430074434198215 ], [ -4362.58709870581, 0.0775255245956248, -0.00013158719037715, -0.00197260370663974, -0.000576921112208274, 0.000430074434198215, 2.23229587481535 ] ) expected_chisq = 836424.055505915 w = GSL::Vector.alloc(longley_n) w.set_all(1.0) c, cov, chisq, _ = GSL::MultiFit.wlinear(x, w, y, work) 7.times { |i| assert_rel c[i], expected_c[i], 1e-10, "longley gsl_fit_wmultilinear c#{i}" } longley_p.times { |i| longley_p.times { |j| assert_rel cov[i, j], expected_cov[i, j], 1e-7, "longley gsl_fit_wmultilinear cov(#{i},#{j})" } } assert_rel chisq, expected_chisq, 1e-10, 'longley gsl_fit_wmultilinear chisq' end end