// Implements a hierarchical layout using the cluster (or dendogram) algorithm. d3.layout.cluster = function() { var hierarchy = d3.layout.hierarchy().sort(null).value(null), separation = d3_layout_treeSeparation, size = [1, 1]; // width, height function cluster(d, i) { var nodes = hierarchy.call(this, d, i), root = nodes[0], previousNode, x = 0, kx, ky; // First walk, computing the initial x & y values. d3_layout_treeVisitAfter(root, function(node) { var children = node.children; if (children && children.length) { node.x = d3_layout_clusterX(children); node.y = d3_layout_clusterY(children); } else { node.x = previousNode ? x += separation(node, previousNode) : 0; node.y = 0; previousNode = node; } }); // Compute the left-most, right-most, and depth-most nodes for extents. var left = d3_layout_clusterLeft(root), right = d3_layout_clusterRight(root), x0 = left.x - separation(left, right) / 2, x1 = right.x + separation(right, left) / 2; // Second walk, normalizing x & y to the desired size. d3_layout_treeVisitAfter(root, function(node) { node.x = (node.x - x0) / (x1 - x0) * size[0]; node.y = (1 - node.y / root.y) * size[1]; }); return nodes; } cluster.separation = function(x) { if (!arguments.length) return separation; separation = x; return cluster; }; cluster.size = function(x) { if (!arguments.length) return size; size = x; return cluster; }; return d3_layout_hierarchyRebind(cluster, hierarchy); }; function d3_layout_clusterY(children) { return 1 + d3.max(children, function(child) { return child.y; }); } function d3_layout_clusterX(children) { return children.reduce(function(x, child) { return x + child.x; }, 0) / children.length; } function d3_layout_clusterLeft(node) { var children = node.children; return children && children.length ? d3_layout_clusterLeft(children[0]) : node; } function d3_layout_clusterRight(node) { var children = node.children, n; return children && (n = children.length) ? d3_layout_clusterRight(children[n - 1]) : node; }