require 'mittsu/core' require 'mittsu/math' module Mittsu class PolyhedronGeometry < Geometry def initialize(vertices, indices, radius = 1.0, detail = 0) super() @type = 'PolyhedronGeometry' @parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail } for i in (0...vertices.length).step(3) do prepare(Vector3.new(vertices[i], vertices[i + 1], vertices[i + 2])) end faces = [] i = 0 j = 0 while i < indices.length do v1 = @vertices[indices[i]] v2 = @vertices[indices[i + 1]] v3 = @vertices[indices[i + 2]] binding.irb if v1.nil? || v2.nil? || v3.nil? faces[j] = Face3.new(v1.index, v2.index, v3.index, [v1.clone, v2.clone, v3.clone]) i += 3 j += 1 end @centroid = Vector3.new for i in 0...faces.length do subdivide(faces[i], detail) end # Handle case when face straddles the seam @face_vertex_uvs[0].each do |uv0, uv1, uv2| x0 = uv0.x x1 = uv1.x x2 = uv2.x max = [x0, x1, x2].max min = [x0, x1, x2].min if max > 0.9 && min < 0.1 # 0.9 is somewhat arbitrary uv0.x += 1.0 if x0 < 0.2 uv1.x += 1.0 if x1 < 0.2 uv2.x += 1.0 if x2 < 0.2 end end # Apply radius @vertices.each do |v| v.multiply_scalar(radius) end merge_vertices compute_face_normals @bounding_sphere = Sphere.new(Vector3.new, radius) end private # Project vector onto sphere's surface def prepare(vector) vertex = vector.normalize.clone vertex.index = @vertices.push(vertex).length - 1 # Texture coords are equivalent to map coords, calculate angle and convert to fraction of a circle. u = azimuth(vector) / 2.0 / Math::PI + 0.5 v = inclination(vector) / Math::PI + 0.5 vertex.uv = Vector2.new(u, 1.0 - v) vertex end # Approximate a curved face with recursively sub-divided triangles. def make(v1, v2, v3) face = Face3.new(v1.index, v2.index, v3.index, [v1.clone, v2.clone, v3.clone]) @faces << face @centroid.copy(v1).add(v2).add(v3).divide_scalar(3) azi = azimuth(@centroid) @face_vertex_uvs[0] << [ correct_uv(v1.uv, v1, azi), correct_uv(v2.uv, v2, azi), correct_uv(v3.uv, v3, azi) ] end # Analytically subdivide a face to the required detail level. def subdivide(face, detail) cols = 2.0 ** detail a = prepare(@vertices[face.a]) b = prepare(@vertices[face.b]) c = prepare(@vertices[face.c]) v = [] # Construct all of the vertices for this subdivision. for i in 0..cols do v[i] = [] aj = prepare(a.clone.lerp(c, i.to_f / cols.to_f)) bj = prepare(b.clone.lerp(c, i.to_f / cols.to_f)) rows = cols - i for j in 0..rows do v[i][j] = if j.zero? && i == cols aj else prepare(aj.clone.lerp(bj, j.to_f / rows.to_f)) end end end # Construct all of the faces for i in 0...cols do for j in (0...(2 * (cols - i) - 1)) do k = j/2 if j.even? make( v[i][k + 1], v[i + 1][k], v[i][k] ) else make( v[i][k + 1], v[i + 1][k + 1], v[i + 1][k] ) end end end end # Angle around the Y axis, counter-clockwise when looking from above. def azimuth(vector) Math.atan2(vector.z, -vector.x) end # Angle above the XZ plane. def inclination(vector) Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z)) end # Texture fixing helper. Spheres have some odd behaviours. def correct_uv(uv, vector, azimuth) return Vector2.new(uv.x - 1.0, uv.y) if azimuth < 0 return Vector2.new(azimuth / 2.0 / Math::PI + 0.5, uv.y) if vector.x.zero? && vector.z.zero? uv.clone end end end