/* * Copyright (c) 2009-2011 Wayne Meissner * * All rights reserved. * * This file is part of ruby-ffi. * * This code is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License version 3 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * version 3 for more details. * * You should have received a copy of the GNU Lesser General Public License * version 3 along with this work. If not, see . */ #include "MethodHandle.h" #include #include #ifndef _WIN32 # include #endif #include #include #include #include #include #if defined(HAVE_NATIVETHREAD) && !defined(_WIN32) #include #endif #include #include "rbffi.h" #include "compat.h" #include "AbstractMemory.h" #include "Pointer.h" #include "Struct.h" #include "Platform.h" #include "Type.h" #include "LastError.h" #include "Call.h" #include "ClosurePool.h" #include "Function.h" #include "MappedType.h" #include "Thread.h" typedef struct Function_ { AbstractMemory memory; FunctionType* info; MethodHandle* methodHandle; bool autorelease; Closure* closure; VALUE rbProc; VALUE rbFunctionInfo; } Function; static void function_mark(Function *); static void function_free(Function *); static VALUE function_init(VALUE self, VALUE rbFunctionInfo, VALUE rbProc); static void callback_invoke(ffi_cif* cif, void* retval, void** parameters, void* user_data); static bool callback_prep(void* ctx, void* code, Closure* closure, char* errmsg, size_t errmsgsize); static void* callback_with_gvl(void* data); #if !defined(_WIN32) || defined(HAVE_RB_THREAD_BLOCKING_REGION) # define DEFER_ASYNC_CALLBACK 1 #endif #if defined(DEFER_ASYNC_CALLBACK) static VALUE async_cb_event(void *); static VALUE async_cb_call(void *); #endif #ifdef HAVE_RB_THREAD_CALL_WITH_GVL extern void *rb_thread_call_with_gvl(void *(*func)(void *), void *data1); #endif VALUE rbffi_FunctionClass = Qnil; #if defined(DEFER_ASYNC_CALLBACK) static VALUE async_cb_thread = Qnil; #endif static ID id_call = 0, id_to_native = 0, id_from_native = 0, id_cbtable = 0, id_cb_ref = 0; struct gvl_callback { Closure* closure; void* retval; void** parameters; bool done; #if defined(DEFER_ASYNC_CALLBACK) struct gvl_callback* next; # ifndef _WIN32 pthread_cond_t async_cond; pthread_mutex_t async_mutex; # else HANDLE async_event; # endif #endif }; #if defined(DEFER_ASYNC_CALLBACK) static struct gvl_callback* async_cb_list = NULL; # ifndef _WIN32 static pthread_mutex_t async_cb_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t async_cb_cond = PTHREAD_COND_INITIALIZER; # if !defined(HAVE_RB_THREAD_BLOCKING_REGION) static int async_cb_pipe[2]; # endif # else static HANDLE async_cb_cond; static CRITICAL_SECTION async_cb_lock; # endif #endif static VALUE function_allocate(VALUE klass) { Function *fn; VALUE obj; obj = Data_Make_Struct(klass, Function, function_mark, function_free, fn); fn->memory.flags = MEM_RD; fn->rbProc = Qnil; fn->rbFunctionInfo = Qnil; fn->autorelease = true; return obj; } static void function_mark(Function *fn) { rb_gc_mark(fn->rbProc); rb_gc_mark(fn->rbFunctionInfo); } static void function_free(Function *fn) { if (fn->methodHandle != NULL) { rbffi_MethodHandle_Free(fn->methodHandle); } if (fn->closure != NULL && fn->autorelease) { rbffi_Closure_Free(fn->closure); } xfree(fn); } static VALUE function_initialize(int argc, VALUE* argv, VALUE self) { VALUE rbReturnType = Qnil, rbParamTypes = Qnil, rbProc = Qnil, rbOptions = Qnil; VALUE rbFunctionInfo = Qnil; VALUE infoArgv[3]; int nargs; nargs = rb_scan_args(argc, argv, "22", &rbReturnType, &rbParamTypes, &rbProc, &rbOptions); // // Callback with block, // e.g. Function.new(:int, [ :int ]) { |i| blah } // or Function.new(:int, [ :int ], { :convention => :stdcall }) { |i| blah } // if (rb_block_given_p()) { if (nargs > 3) { rb_raise(rb_eArgError, "cannot create function with both proc/address and block"); } rbOptions = rbProc; rbProc = rb_block_proc(); } else { // Callback with proc, or Function with address // e.g. Function.new(:int, [ :int ], Proc.new { |i| }) // Function.new(:int, [ :int ], Proc.new { |i| }, { :convention => :stdcall }) // Function.new(:int, [ :int ], addr) // Function.new(:int, [ :int ], addr, { :convention => :stdcall }) } infoArgv[0] = rbReturnType; infoArgv[1] = rbParamTypes; infoArgv[2] = rbOptions; rbFunctionInfo = rb_class_new_instance(rbOptions != Qnil ? 3 : 2, infoArgv, rbffi_FunctionTypeClass); function_init(self, rbFunctionInfo, rbProc); return self; } VALUE rbffi_Function_NewInstance(VALUE rbFunctionInfo, VALUE rbProc) { return function_init(function_allocate(rbffi_FunctionClass), rbFunctionInfo, rbProc); } VALUE rbffi_Function_ForProc(VALUE rbFunctionInfo, VALUE proc) { VALUE callback, cbref, cbTable; Function* fp; cbref = RTEST(rb_ivar_defined(proc, id_cb_ref)) ? rb_ivar_get(proc, id_cb_ref) : Qnil; /* If the first callback reference has the same function function signature, use it */ if (cbref != Qnil && CLASS_OF(cbref) == rbffi_FunctionClass) { Data_Get_Struct(cbref, Function, fp); if (fp->rbFunctionInfo == rbFunctionInfo) { return cbref; } } cbTable = RTEST(rb_ivar_defined(proc, id_cbtable)) ? rb_ivar_get(proc, id_cbtable) : Qnil; if (cbTable != Qnil && (callback = rb_hash_aref(cbTable, rbFunctionInfo)) != Qnil) { return callback; } /* No existing function for the proc with that signature, create a new one and cache it */ callback = rbffi_Function_NewInstance(rbFunctionInfo, proc); if (cbref == Qnil) { /* If there is no other cb already cached for this proc, we can use the ivar slot */ rb_ivar_set(proc, id_cb_ref, callback); } else { /* The proc instance has been used as more than one type of callback, store extras in a hash */ cbTable = rb_hash_new(); rb_ivar_set(proc, id_cbtable, cbTable); rb_hash_aset(cbTable, rbFunctionInfo, callback); } return callback; } static VALUE function_init(VALUE self, VALUE rbFunctionInfo, VALUE rbProc) { Function* fn = NULL; Data_Get_Struct(self, Function, fn); fn->rbFunctionInfo = rbFunctionInfo; Data_Get_Struct(fn->rbFunctionInfo, FunctionType, fn->info); if (rb_obj_is_kind_of(rbProc, rbffi_PointerClass)) { AbstractMemory* memory; Data_Get_Struct(rbProc, AbstractMemory, memory); fn->memory = *memory; } else if (rb_obj_is_kind_of(rbProc, rb_cProc) || rb_respond_to(rbProc, id_call)) { if (fn->info->closurePool == NULL) { fn->info->closurePool = rbffi_ClosurePool_New(sizeof(ffi_closure), callback_prep, fn->info); if (fn->info->closurePool == NULL) { rb_raise(rb_eNoMemError, "failed to create closure pool"); } } #if defined(DEFER_ASYNC_CALLBACK) if (async_cb_thread == Qnil) { #if !defined(HAVE_RB_THREAD_BLOCKING_REGION) pipe(async_cb_pipe); fcntl(async_cb_pipe[0], F_SETFL, fcntl(async_cb_pipe[0], F_GETFL) | O_NONBLOCK); fcntl(async_cb_pipe[1], F_SETFL, fcntl(async_cb_pipe[1], F_GETFL) | O_NONBLOCK); #endif async_cb_thread = rb_thread_create(async_cb_event, NULL); } #endif fn->closure = rbffi_Closure_Alloc(fn->info->closurePool); fn->closure->info = fn; fn->memory.address = fn->closure->code; fn->memory.size = sizeof(*fn->closure); fn->autorelease = true; } else { rb_raise(rb_eTypeError, "wrong argument type %s, expected pointer or proc", rb_obj_classname(rbProc)); } fn->rbProc = rbProc; return self; } static VALUE function_call(int argc, VALUE* argv, VALUE self) { Function* fn; Data_Get_Struct(self, Function, fn); return (*fn->info->invoke)(argc, argv, fn->memory.address, fn->info); } static VALUE function_attach(VALUE self, VALUE module, VALUE name) { Function* fn; char var[1024]; Data_Get_Struct(self, Function, fn); if (fn->info->parameterCount == -1) { rb_raise(rb_eRuntimeError, "cannot attach variadic functions"); return Qnil; } if (!rb_obj_is_kind_of(module, rb_cModule)) { rb_raise(rb_eRuntimeError, "trying to attach function to non-module"); return Qnil; } if (fn->methodHandle == NULL) { fn->methodHandle = rbffi_MethodHandle_Alloc(fn->info, fn->memory.address); } // // Stash the Function in a module variable so it does not get garbage collected // snprintf(var, sizeof(var), "@@%s", StringValueCStr(name)); rb_cv_set(module, var, self); rb_define_singleton_method(module, StringValueCStr(name), rbffi_MethodHandle_CodeAddress(fn->methodHandle), -1); rb_define_method(module, StringValueCStr(name), rbffi_MethodHandle_CodeAddress(fn->methodHandle), -1); return self; } static VALUE function_set_autorelease(VALUE self, VALUE autorelease) { Function* fn; Data_Get_Struct(self, Function, fn); fn->autorelease = RTEST(autorelease); return self; } static VALUE function_autorelease_p(VALUE self) { Function* fn; Data_Get_Struct(self, Function, fn); return fn->autorelease ? Qtrue : Qfalse; } static VALUE function_release(VALUE self) { Function* fn; Data_Get_Struct(self, Function, fn); if (fn->closure == NULL) { rb_raise(rb_eRuntimeError, "cannot free function which was not allocated"); } rbffi_Closure_Free(fn->closure); fn->closure = NULL; return self; } static void callback_invoke(ffi_cif* cif, void* retval, void** parameters, void* user_data) { struct gvl_callback cb; cb.closure = (Closure *) user_data; cb.retval = retval; cb.parameters = parameters; cb.done = false; if (rbffi_thread_has_gvl_p()) { callback_with_gvl(&cb); #if defined(HAVE_RUBY_NATIVE_THREAD_P) && defined (HAVE_RB_THREAD_CALL_WITH_GVL) } else if (ruby_native_thread_p()) { rb_thread_call_with_gvl(callback_with_gvl, &cb); #endif #if defined(DEFER_ASYNC_CALLBACK) && !defined(_WIN32) } else { bool empty = false; pthread_mutex_init(&cb.async_mutex, NULL); pthread_cond_init(&cb.async_cond, NULL); // Now signal the async callback thread pthread_mutex_lock(&async_cb_mutex); empty = async_cb_list == NULL; cb.next = async_cb_list; async_cb_list = &cb; pthread_mutex_unlock(&async_cb_mutex); #if !defined(HAVE_RB_THREAD_BLOCKING_REGION) // Only signal if the list was empty if (empty) { char c; write(async_cb_pipe[1], &c, 1); } #else pthread_cond_signal(&async_cb_cond); #endif // Wait for the thread executing the ruby callback to signal it is done pthread_mutex_lock(&cb.async_mutex); while (!cb.done) { pthread_cond_wait(&cb.async_cond, &cb.async_mutex); } pthread_mutex_unlock(&cb.async_mutex); pthread_cond_destroy(&cb.async_cond); pthread_mutex_destroy(&cb.async_mutex); #elif defined(DEFER_ASYNC_CALLBACK) && defined(_WIN32) } else { cb.async_event = CreateEvent(NULL, FALSE, FALSE, NULL); // Now signal the async callback thread EnterCriticalSection(&async_cb_lock); cb.next = async_cb_list; async_cb_list = &cb; LeaveCriticalSection(&async_cb_lock); SetEvent(async_cb_cond); // Wait for the thread executing the ruby callback to signal it is done WaitForSingleObject(cb.async_event, INFINITE); CloseHandle(cb.async_event); #endif } } #if defined(DEFER_ASYNC_CALLBACK) struct async_wait { void* cb; bool stop; }; static VALUE async_cb_wait(void *); static void async_cb_stop(void *); #if defined(HAVE_RB_THREAD_BLOCKING_REGION) static VALUE async_cb_event(void* unused) { struct async_wait w = { 0 }; w.stop = false; while (!w.stop) { rb_thread_blocking_region(async_cb_wait, &w, async_cb_stop, &w); if (w.cb != NULL) { // Start up a new ruby thread to run the ruby callback rb_thread_create(async_cb_call, w.cb); } } return Qnil; } #else static VALUE async_cb_event(void* unused) { while (true) { struct gvl_callback* cb; char buf[64]; if (read(async_cb_pipe[0], buf, sizeof(buf)) < 0) { rb_thread_wait_fd(async_cb_pipe[0]); while (read(async_cb_pipe[0], buf, sizeof (buf)) < 0) { if (rb_io_wait_readable(async_cb_pipe[0]) != Qtrue) { return Qfalse; } } } pthread_mutex_lock(&async_cb_mutex); cb = async_cb_list; async_cb_list = NULL; pthread_mutex_unlock(&async_cb_mutex); while (cb != NULL) { struct gvl_callback* next = cb->next; // Start up a new ruby thread to run the ruby callback rb_thread_create(async_cb_call, cb); cb = next; } } return Qnil; } #endif #ifdef _WIN32 static VALUE async_cb_wait(void *data) { struct async_wait* w = (struct async_wait *) data; w->cb = NULL; EnterCriticalSection(&async_cb_lock); while (!w->stop && async_cb_list == NULL) { LeaveCriticalSection(&async_cb_lock); WaitForSingleObject(async_cb_cond, INFINITE); EnterCriticalSection(&async_cb_lock); } if (async_cb_list != NULL) { w->cb = async_cb_list; async_cb_list = async_cb_list->next; } LeaveCriticalSection(&async_cb_lock); return Qnil; } static void async_cb_stop(void *data) { struct async_wait* w = (struct async_wait *) data; EnterCriticalSection(&async_cb_lock); w->stop = true; LeaveCriticalSection(&async_cb_lock); SetEvent(async_cb_cond); } #else static VALUE async_cb_wait(void *data) { struct async_wait* w = (struct async_wait *) data; w->cb = NULL; pthread_mutex_lock(&async_cb_mutex); while (!w->stop && async_cb_list == NULL) { pthread_cond_wait(&async_cb_cond, &async_cb_mutex); } if (async_cb_list != NULL) { w->cb = async_cb_list; async_cb_list = async_cb_list->next; } pthread_mutex_unlock(&async_cb_mutex); return Qnil; } static void async_cb_stop(void *data) { struct async_wait* w = (struct async_wait *) data; pthread_mutex_lock(&async_cb_mutex); w->stop = true; pthread_cond_signal(&async_cb_cond); pthread_mutex_unlock(&async_cb_mutex); } #endif static VALUE async_cb_call(void *data) { struct gvl_callback* cb = (struct gvl_callback *) data; callback_with_gvl(cb); // Signal the original native thread that the ruby code has completed #ifdef _WIN32 SetEvent(cb->async_event); #else pthread_mutex_lock(&cb->async_mutex); cb->done = true; pthread_cond_signal(&cb->async_cond); pthread_mutex_unlock(&cb->async_mutex); #endif return Qnil; } #endif static void* callback_with_gvl(void* data) { struct gvl_callback* cb = (struct gvl_callback *) data; Function* fn = (Function *) cb->closure->info; FunctionType *cbInfo = fn->info; Type* returnType = cbInfo->returnType; void* retval = cb->retval; void** parameters = cb->parameters; VALUE* rbParams; VALUE rbReturnType = cbInfo->rbReturnType; VALUE rbReturnValue; int i; rbParams = ALLOCA_N(VALUE, cbInfo->parameterCount); for (i = 0; i < cbInfo->parameterCount; ++i) { VALUE param; Type* paramType = cbInfo->parameterTypes[i]; VALUE rbParamType = rb_ary_entry(cbInfo->rbParameterTypes, i); if (unlikely(paramType->nativeType == NATIVE_MAPPED)) { paramType = ((MappedType *) paramType)->type; rbParamType = ((MappedType *) paramType)->rbType; } switch (paramType->nativeType) { case NATIVE_INT8: param = INT2NUM(*(int8_t *) parameters[i]); break; case NATIVE_UINT8: param = UINT2NUM(*(uint8_t *) parameters[i]); break; case NATIVE_INT16: param = INT2NUM(*(int16_t *) parameters[i]); break; case NATIVE_UINT16: param = UINT2NUM(*(uint16_t *) parameters[i]); break; case NATIVE_INT32: param = INT2NUM(*(int32_t *) parameters[i]); break; case NATIVE_UINT32: param = UINT2NUM(*(uint32_t *) parameters[i]); break; case NATIVE_INT64: param = LL2NUM(*(int64_t *) parameters[i]); break; case NATIVE_UINT64: param = ULL2NUM(*(uint64_t *) parameters[i]); break; case NATIVE_LONG: param = LONG2NUM(*(long *) parameters[i]); break; case NATIVE_ULONG: param = ULONG2NUM(*(unsigned long *) parameters[i]); break; case NATIVE_FLOAT32: param = rb_float_new(*(float *) parameters[i]); break; case NATIVE_FLOAT64: param = rb_float_new(*(double *) parameters[i]); break; case NATIVE_STRING: param = (*(void **) parameters[i] != NULL) ? rb_tainted_str_new2(*(char **) parameters[i]) : Qnil; break; case NATIVE_POINTER: param = rbffi_Pointer_NewInstance(*(void **) parameters[i]); break; case NATIVE_BOOL: param = (*(uint8_t *) parameters[i]) ? Qtrue : Qfalse; break; case NATIVE_FUNCTION: case NATIVE_CALLBACK: case NATIVE_STRUCT: param = rbffi_NativeValue_ToRuby(paramType, rbParamType, parameters[i]); break; default: param = Qnil; break; } // Convert the native value into a custom ruby value if (unlikely(cbInfo->parameterTypes[i]->nativeType == NATIVE_MAPPED)) { VALUE values[] = { param, Qnil }; param = rb_funcall2(((MappedType *) cbInfo->parameterTypes[i])->rbConverter, id_from_native, 2, values); } rbParams[i] = param; } rbReturnValue = rb_funcall2(fn->rbProc, id_call, cbInfo->parameterCount, rbParams); if (unlikely(returnType->nativeType == NATIVE_MAPPED)) { VALUE values[] = { rbReturnValue, Qnil }; rbReturnValue = rb_funcall2(((MappedType *) returnType)->rbConverter, id_to_native, 2, values); rbReturnType = ((MappedType *) returnType)->rbType; returnType = ((MappedType* ) returnType)->type; } if (rbReturnValue == Qnil || TYPE(rbReturnValue) == T_NIL) { memset(retval, 0, returnType->ffiType->size); } else switch (returnType->nativeType) { case NATIVE_INT8: case NATIVE_INT16: case NATIVE_INT32: *((ffi_sarg *) retval) = NUM2INT(rbReturnValue); break; case NATIVE_UINT8: case NATIVE_UINT16: case NATIVE_UINT32: *((ffi_arg *) retval) = NUM2UINT(rbReturnValue); break; case NATIVE_INT64: *((int64_t *) retval) = NUM2LL(rbReturnValue); break; case NATIVE_UINT64: *((uint64_t *) retval) = NUM2ULL(rbReturnValue); break; case NATIVE_LONG: *((ffi_sarg *) retval) = NUM2LONG(rbReturnValue); break; case NATIVE_ULONG: *((ffi_arg *) retval) = NUM2ULONG(rbReturnValue); break; case NATIVE_FLOAT32: *((float *) retval) = (float) NUM2DBL(rbReturnValue); break; case NATIVE_FLOAT64: *((double *) retval) = NUM2DBL(rbReturnValue); break; case NATIVE_POINTER: if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_PointerClass)) { *((void **) retval) = ((AbstractMemory *) DATA_PTR(rbReturnValue))->address; } else { // Default to returning NULL if not a value pointer object. handles nil case as well *((void **) retval) = NULL; } break; case NATIVE_BOOL: *((ffi_arg *) retval) = rbReturnValue == Qtrue; break; case NATIVE_FUNCTION: case NATIVE_CALLBACK: if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_PointerClass)) { *((void **) retval) = ((AbstractMemory *) DATA_PTR(rbReturnValue))->address; } else if (rb_obj_is_kind_of(rbReturnValue, rb_cProc) || rb_respond_to(rbReturnValue, id_call)) { VALUE function; function = rbffi_Function_ForProc(rbReturnType, rbReturnValue); *((void **) retval) = ((AbstractMemory *) DATA_PTR(function))->address; } else { *((void **) retval) = NULL; } break; case NATIVE_STRUCT: if (TYPE(rbReturnValue) == T_DATA && rb_obj_is_kind_of(rbReturnValue, rbffi_StructClass)) { AbstractMemory* memory = ((Struct *) DATA_PTR(rbReturnValue))->pointer; if (memory->address != NULL) { memcpy(retval, memory->address, returnType->ffiType->size); } else { memset(retval, 0, returnType->ffiType->size); } } else { memset(retval, 0, returnType->ffiType->size); } break; default: *((ffi_arg *) retval) = 0; break; } return NULL; } static bool callback_prep(void* ctx, void* code, Closure* closure, char* errmsg, size_t errmsgsize) { FunctionType* fnInfo = (FunctionType *) ctx; ffi_status ffiStatus; ffiStatus = ffi_prep_closure(code, &fnInfo->ffi_cif, callback_invoke, closure); if (ffiStatus != FFI_OK) { snprintf(errmsg, errmsgsize, "ffi_prep_closure failed. status=%#x", ffiStatus); return false; } return true; } void rbffi_Function_Init(VALUE moduleFFI) { rbffi_FunctionInfo_Init(moduleFFI); rbffi_FunctionClass = rb_define_class_under(moduleFFI, "Function", rbffi_PointerClass); rb_global_variable(&rbffi_FunctionClass); rb_define_alloc_func(rbffi_FunctionClass, function_allocate); rb_define_method(rbffi_FunctionClass, "initialize", function_initialize, -1); rb_define_method(rbffi_FunctionClass, "call", function_call, -1); rb_define_method(rbffi_FunctionClass, "attach", function_attach, 2); rb_define_method(rbffi_FunctionClass, "free", function_release, 0); rb_define_method(rbffi_FunctionClass, "autorelease=", function_set_autorelease, 1); rb_define_method(rbffi_FunctionClass, "autorelease", function_autorelease_p, 0); rb_define_method(rbffi_FunctionClass, "autorelease?", function_autorelease_p, 0); id_call = rb_intern("call"); id_cbtable = rb_intern("@__ffi_callback_table__"); id_cb_ref = rb_intern("@__ffi_callback__"); id_to_native = rb_intern("to_native"); id_from_native = rb_intern("from_native"); #if defined(_WIN32) && defined(HAVE_RB_THREAD_BLOCKING_REGION) InitializeCriticalSection(&async_cb_lock); async_cb_cond = CreateEvent(NULL, FALSE, FALSE, NULL); #endif }