module Statsample
module Test
module T
class << self
include Math
# Test the null hypothesis that the population mean is equal to a specified value u, one uses the statistic.
# Is the same formula used on t-test for paired sample.
# * x: sample/differences mean
# * u: population mean
# * s: sample/differences standard deviation
# * n: sample size
def one_sample(x,u,s,n)
(x-u).quo(s.quo(Math::sqrt(n)))
end
# Test if means of two samples are different.
# * x1: sample 1 mean
# * x2: sample 2 mean
# * s1: sample 1 standard deviation
# * s2: sample 2 standard deviation
# * n1: sample 1 size
# * n2: sample 2 size
# * equal_variance: true if equal_variance assumed
#
def two_sample_independent(x1, x2, s1, s2, n1, n2, equal_variance = false)
num=x1-x2
if equal_variance
sx1x2 = sqrt(((n1-1)*s1**2 + (n2-1)*s2**2).quo(n1+n2-2))
den = sx1x2*sqrt(1.quo(n1)+1.quo(n2))
else
den=sqrt((s1**2).quo(n1) + (s2**2).quo(n2))
end
num.quo(den)
end
# Degrees of freedom for equal variance
def df_equal_variance(n1,n2)
n1+n2-2
end
# Degrees of freedom for unequal variance
# * s1: sample 1 standard deviation
# * s2: sample 2 standard deviation
# * n1: sample 1 size
# * n2: sample 2 size
# == Reference
# * http://en.wikipedia.org/wiki/Welch-Satterthwaite_equation
def df_not_equal_variance(s1,s2,n1,n2)
s2_1=s1**2
s2_2=s2**2
num=(s2_1.quo(n1)+s2_2.quo(n2))**2
den=(s2_1.quo(n1)**2).quo(n1-1) + (s2_2.quo(n2)**2).quo(n2-1)
num.quo(den)
end
end
# One Sample t-test
# == Usage
# a=1000.times.map {rand(100)}.to_scale
# t_1=Statsample::Test::T::OneSample.new(a, {:u=>50})
# t_1.summary
class OneSample
include Math
include Statsample::Test
extend Statsample::PromiseAfter
# Options
attr_accessor :opts
# Name of test
attr_accessor :name
# Population mean to contrast
attr_accessor :u
# Degress of freedom
attr_reader :df
# Value of t
attr_reader :t
# Probability
attr_reader :probability
# Tails for probability (:both, :left or :right)
attr_accessor :tails
def initialize(vector, opts=Hash.new)
@vector=vector
default={:u=>0, :name=>"One Sample T Test", :tails=>:both}
@opts=default.merge(opts)
@name=@opts[:name]
@u=@opts[:u]
@tails=@opts[:tails]
@df= @vector.n_valid-1
@t=nil
end
promise_after :compute, :t, :probability
# Set t and probability for given u
def compute
@t = T.one_sample(@vector.mean, @u, @vector.sd, @vector.n_valid)
@probability = p_using_cdf(Distribution::T.cdf(@t, @df), tails)
end
# Presents summary of analysis
#
def summary
ReportBuilder.new(:no_title=>true).add(self).to_text
end
def report_building(b) # :nodoc:
b.section(:name=>@name) {|s|
s.text "Sample mean: #{@vector.mean}"
s.text "Population mean:#{u}"
s.text "Tails: #{tails}"
s.text sprintf("t = %0.4f, p=%0.4f, d.f=%d", t, probability, df)
}
end
end
# Two Sample t-test.
#
# == Usage
# a=1000.times.map {rand(100)}.to_scale
# b=1000.times.map {rand(100)}.to_scale
# t_2=Statsample::Test::T::OneSample.new(a,b)
# t_2.summary
class TwoSamplesIndependent
include Math
include Statsample::Test
extend Statsample::PromiseAfter
# Options
attr_accessor :opts
# Name of test
attr_accessor :name
# Degress of freedom (equal variance)
attr_reader :df_equal_variance
# Degress of freedom (not equal variance)
attr_reader :df_not_equal_variance
# Value of t for equal_variance
attr_reader :t_equal_variance
# Value of t for non-equal_variance
attr_reader :t_not_equal_variance
# Probability(equal variance)
attr_reader :probability_equal_variance
# Probability(unequal variance)
attr_reader :probability_not_equal_variance
# Tails for probability (:both, :left or :right)
attr_accessor :tails
# Create the object
def initialize(v1, v2, opts=Hash.new)
@v1=v1
@v2=v2
default={:u=>0, :name=>"Two Sample T Test", :paired_samples=>false, :tails=>:both}
@opts=default.merge(opts)
@name=@opts[:name]
@tails=@opts[:tails]
end
promise_after :compute, :t_equal_variance, :t_not_equal_variance, :probability_equal_variance, :probability_not_equal_variance, :df_equal_variance, :df_not_equal_variance
# Set t and probability for given u
def compute
@t_equal_variance= T.two_sample_independent(@v1.mean, @v2.mean, @v1.sd, @v2.sd, @v1.n_valid, @v2.n_valid,true)
@t_not_equal_variance= T.two_sample_independent(@v1.mean, @v2.mean, @v1.sd, @v2.sd, @v1.n_valid, @v2.n_valid, false)
@df_equal_variance=T.df_equal_variance(@v1.n_valid, @v2.n_valid)
@df_not_equal_variance=T.df_not_equal_variance(@v1.sd, @v2.sd, @v1.n_valid, @v2.n_valid)
@probability_equal_variance = p_using_cdf(Distribution::T.cdf(@t_equal_variance, @df_equal_variance), tails)
@probability_not_equal_variance = p_using_cdf(Distribution::T.cdf(@t_not_equal_variance, @df_not_equal_variance), tails)
end
# Presents summary of analysis
#
def summary
ReportBuilder.new(:no_title=>true).add(self).to_text
end
def report_building(b) # :nodoc:
b.section(:name=>@name) {|g|
g.table(:name=>"Mean and standard deviation", :header=>["Variable", "m", "sd","n"]) {|t|
t.row([1,"%0.4f" % @v1.mean,"%0.4f" % @v1.sd,@v1.n_valid])
t.row([2,"%0.4f" % @v2.mean,"%0.4f" % @v2.sd, @v2.n_valid])
}
g.section(:name=>"Levene Test") {|g1|
g1.parse_element(Statsample::Test.levene([@v1,@v2]))
}
g.table(:name=>"T statistics",:header=>["Type","t","df", "p (#{tails} tails)"]) {|t|
t.row(["Equal variance", "%0.4f" % t_equal_variance, df_equal_variance, "%0.4f" % probability_equal_variance])
t.row(["Non equal variance", "%0.4f" % t_not_equal_variance, "%0.4f" % df_not_equal_variance, "%0.4f" % probability_not_equal_variance])
}
}
end
end
end
end
end