/** Copyright 2004-2008 Ricard Marxer This file is part of Geomerative. Geomerative is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Geomerative is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Geomerative. If not, see . */ package geomerative; /** * RPoint is a very simple interface for creating, holding and drawing 2D points. * @eexample RPoint * @usage Geometry * @related x * @related y */ public class RPoint { /** * The x coordinate of the point. * @eexample RPoint_x * @usage Geometry * @related y */ public float x; /** * The y coordinate of the point. * @eexample RPoint_y * @usage Geometry * @related x */ public float y; /** * Create a new point, given the coordinates. * @eexample RPoint_constructor * @usage Geometry * @param x the x coordinate of the new point * @param y the y coordinate of the new point * @related x * @related y */ public RPoint(float x,float y) { this.x = x; this.y = y; } public RPoint(double x, double y) { this.x = (float)x; this.y = (float)y; } /** * Create a new point at (0, 0). * @eexample RPoint_constructor * @usage Geometry * @related x * @related y */ public RPoint() { x = 0; y = 0; } /** * Copy a point. * @eexample RPoint_constructor * @usage Geometry * @param p the point we wish to make a copy of * @related x * @related y */ public RPoint(RPoint p) { this.x = p.x; this.y = p.y; } /** * @invisible */ float getX() { return this.x; } /** * @invisible */ float getY() { return this.y; } /** * @invisible */ void setLocation(float nx, float ny) { this.x = nx; this.y = ny; } /** * Use this to apply a transformation to the point. * @eexample RPoint_transform * @usage Geometry * @param m the transformation matrix to be applied * @related translate ( ) * @related rotate ( ) * @related scale ( ) */ public void transform(RMatrix m) { float tempx = m.m00*x + m.m01*y + m.m02; float tempy = m.m10*x + m.m11*y + m.m12; x = tempx; y = tempy; } /** * Apply a translation to the point. * @eexample RPoint_translate * @usage Geometry * @param tx the coefficient of x translation * @param ty the coefficient of y translation * @related transform ( ) * @related rotate ( ) * @related scale ( ) */ public void translate(float tx, float ty) { x += tx; y += ty; } /** * Apply a translation to the point. * @eexample RPoint_translate * @usage Geometry * @param t the translation vector to be applied * @related transform ( ) * @related rotate ( ) * @related scale ( ) */ public void translate(RPoint t) { x += t.x; y += t.y; } /** * Apply a rotation to the point, given the angle and optionally the coordinates of the center of rotation. * @eexample RPoint_rotate * @usage Geometry * @param angle the angle of rotation to be applied * @param vx the x coordinate of the center of rotation * @param vy the y coordinate of the center of rotation * @related transform ( ) * @related translate ( ) * @related scale ( ) */ public void rotate(float angle, float vx, float vy) { float c = (float)Math.cos(angle); float s = (float)Math.sin(angle); x -= vx; y -= vy; float tempx = x; float tempy = y; x = tempx*c - tempy*s; y = tempx*s + tempy*c; x += vx; y += vy; } public void rotate(float angle) { float c = (float)Math.cos(angle); float s = (float)Math.sin(angle); float tempx = x; float tempy = y; x = tempx*c - tempy*s; y = tempx*s + tempy*c; } /** * Apply a rotation to the point, given the angle and optionally the point of the center of rotation. * @eexample RPoint_rotate * @usage Geometry * @param angle the angle of rotation to be applied * @param v the position vector of the center of rotation * @related transform ( ) * @related translate ( ) * @related scale ( ) */ public void rotate(float angle, RPoint v) { float c = (float)Math.cos(angle); float s = (float)Math.sin(angle); x -= v.x; y -= v.y; float tempx = x; float tempy = y; x = tempx*c - tempy*s; y = tempx*s + tempy*c; x += v.x; y += v.y; } /** * Apply a scaling to the point, given the scaling factors. * @eexample RPoint_scale * @usage Geometry * @param sx the scaling coefficient over the x axis * @param sy the scaling coefficient over the y axis * @related transform ( ) * @related translate ( ) * @related rotate ( ) */ public void scale (float sx, float sy) { x *= sx; y *= sy; } /** * Apply a scaling to the point, given a scaling factor. * @eexample RPoint_scale * @usage Geometry * @param s the scaling coefficient for a uniform scaling * @related transform ( ) * @related translate ( ) * @related rotate ( ) */ public void scale (float s) { x *= s; y *= s; } /** * Apply a scaling to the point, given a scaling vector. * @eexample RPoint_scale * @usage Geometry * @param s the scaling vector * @related transform ( ) * @related translate ( ) * @related rotate ( ) */ public void scale (RPoint s) { x *= s.x; y *= s.y; } /** * Use this to normalize the point. This means that after applying, it's norm will be equal to 1. * @eexample RPoint_normalize * @usage Geometry * @related transform ( ) * @related translate ( ) * @related rotate ( ) * @related scale ( ) */ public void normalize () { float norma = norm(); if(norma!=0) scale(1/norma); } /** * Use this to subtract a vector from this point. * @eexample RPoint_sub * @usage Geometry * @param p the vector to substract * @related add ( ) * @related mult ( ) * @related cross ( ) */ public void sub (RPoint p) { x -= p.x; y -= p.y; } /** * Use this to add a vector to this point. * @eexample RPoint_add * @usage Geometry * @param p the vector to add * @related sub ( ) * @related mult ( ) * @related cross ( ) */ public void add (RPoint p) { x += p.x; y += p.y; } /** * Use this to multiply a vector to this point. This returns a float corresponding to the scalar product of both vectors. * @eexample RPoint_mult * @usage Geometry * @param p the vector to multiply * @return float, the result of the scalar product * @related add ( ) * @related sub ( ) * @related cross ( ) */ public float mult (RPoint p) { return (x * p.x + y * p.y); } /** * Use this to perform a cross product of the point with another point. This returns a RPoint corresponding to the cross product of both vectors. * @eexample RPoint_cross * @usage Geometry * @param p the vector to perform the cross product with * @return RPoint, the resulting vector of the cross product * @related add ( ) * @related sub ( ) * @related mult ( ) */ public RPoint cross (RPoint p) { return new RPoint(x * p.y - p.x * y, y * p.x - p.y * x); } /** * Use this to obtain the norm of the point. * @eexample RPoint_norm * @usage Geometry * @return float, the norm of the point * @related angle ( ) */ public float norm () { return (float)Math.sqrt(mult(this)); } /** * Use this to obtain the square norm of the point. * @eexample RPoint_norm * @usage Geometry * @return float, the norm of the point * @related angle ( ) */ public float sqrnorm () { return (float)mult(this); } /** * Use this to obtain the angle between the vector and another vector * @eexample RPoint_angle * @usage Geometry * @param p the vector relative to which we want to evaluate the angle * @return float, the angle between the two vectors * @related norm ( ) */ public float angle (RPoint p) { float normp = p.norm(); float normthis = norm(); return (float)Math.acos(mult(p)/(normp*normthis)); } /** * Use this to obtain the distance between the vector and another vector * @eexample RPoint_dist * @usage Geometry * @param p the vector relative to which we want to evaluate the distance * @return float, the distance between the two vectors * @related norm ( ) */ public float dist (RPoint p) { float dx = (p.x-this.x); float dy = (p.y-this.y); return (float)Math.sqrt(dx*dx + dy*dy); } public void print(){ System.out.print("("+x+","+y+")\n"); } }