# The TypeCalculator can answer questions about puppet types. # # The Puppet type system is primarily based on sub-classing. When asking the type calculator to infer types from Ruby in general, it # may not provide the wanted answer; it does not for instance take module inclusions and extensions into account. In general the type # system should be unsurprising for anyone being exposed to the notion of type. The type `Data` may require a bit more explanation; this # is an abstract type that includes all scalar types, as well as Array with an element type compatible with Data, and Hash with key # compatible with scalar and elements compatible with Data. Expressed differently; Data is what you typically express using JSON (with # the exception that the Puppet type system also includes Pattern (regular expression) as a scalar. # # Inference # --------- # The `infer(o)` method infers a Puppet type for scalar Ruby objects, and for Arrays and Hashes. # The inference result is instance specific for single typed collections # and allows answering questions about its embedded type. It does not however preserve multiple types in # a collection, and can thus not answer questions like `[1,a].infer() =~ Array[Integer, String]` since the inference # computes the common type Scalar when combining Integer and String. # # The `infer_generic(o)` method infers a generic Puppet type for scalar Ruby object, Arrays and Hashes. # This inference result does not contain instance specific information; e.g. Array[Integer] where the integer # range is the generic default. Just `infer` it also combines types into a common type. # # The `infer_set(o)` method works like `infer` but preserves all type information. It does not do any # reduction into common types or ranges. This method of inference is best suited for answering questions # about an object being an instance of a type. It correctly answers: `[1,a].infer_set() =~ Array[Integer, String]` # # The `generalize!(t)` method modifies an instance specific inference result to a generic. The method mutates # the given argument. Basically, this removes string instances from String, and range from Integer and Float. # # Assignability # ------------- # The `assignable?(t1, t2)` method answers if t2 conforms to t1. The type t2 may be an instance, in which case # its type is inferred, or a type. # # Instance? # --------- # The `instance?(t, o)` method answers if the given object (instance) is an instance that is assignable to the given type. # # String # ------ # Creates a string representation of a type. # # Creation of Type instances # -------------------------- # Instance of the classes in the {Puppet::Pops::Types type model} are used to denote a specific type. It is most convenient # to use the {Puppet::Pops::Types::TypeFactory TypeFactory} when creating instances. # # @note # In general, new instances of the wanted type should be created as they are assigned to models using containment, and a # contained object can only be in one container at a time. Also, the type system may include more details in each type # instance, such as if it may be nil, be empty, contain a certain count etc. Or put differently, the puppet types are not # singletons. # # All types support `copy` which should be used when assigning a type where it is unknown if it is bound or not # to a parent type. A check can be made with `t.eContainer().nil?` # # Equality and Hash # ----------------- # Type instances are equal in terms of Ruby eql? and `==` if they describe the same type, but they are not `equal?` if they are not # the same type instance. Two types that describe the same type have identical hash - this makes them usable as hash keys. # # Types and Subclasses # -------------------- # In general, the type calculator should be used to answer questions if a type is a subtype of another (using {#assignable?}, or # {#instance?} if the question is if a given object is an instance of a given type (or is a subtype thereof). # Many of the types also have a Ruby subtype relationship; e.g. PHashType and PArrayType are both subtypes of PCollectionType, and # PIntegerType, PFloatType, PStringType,... are subtypes of PScalarType. Even if it is possible to answer certain questions about # type by looking at the Ruby class of the types this is considered an implementation detail, and such checks should in general # be performed by the type_calculator which implements the type system semantics. # # The PRuntimeType # ------------- # The PRuntimeType corresponds to a type in the runtime system (currently only supported runtime is 'ruby'). The # type has a runtime_type_name that corresponds to a Ruby Class name. # A Runtime[ruby] type can be used to describe any ruby class except for the puppet types that are specialized # (i.e. PRuntimeType should not be used for Integer, String, etc. since there are specialized types for those). # When the type calculator deals with PRuntimeTypes and checks for assignability, it determines the # "common ancestor class" of two classes. # This check is made based on the superclasses of the two classes being compared. In order to perform this, the # classes must be present (i.e. they are resolved from the string form in the PRuntimeType to a # loaded, instantiated Ruby Class). In general this is not a problem, since the question to produce the common # super type for two objects means that the classes must be present or there would have been # no instances present in the first place. If however the classes are not present, the type # calculator will fall back and state that the two types at least have Any in common. # # @see Puppet::Pops::Types::TypeFactory TypeFactory for how to create instances of types # @see Puppet::Pops::Types::TypeParser TypeParser how to construct a type instance from a String # @see Puppet::Pops::Types Types for details about the type model # # Using the Type Calculator # ----- # The type calculator can be directly used via its class methods. If doing time critical work and doing many # calls to the type calculator, it is more performant to create an instance and invoke the corresponding # instance methods. Note that inference is an expensive operation, rather than inferring the same thing # several times, it is in general better to infer once and then copy the result if mutation to a more generic form is # required. # # @api public # class Puppet::Pops::Types::TypeCalculator Types = Puppet::Pops::Types # @api public def self.assignable?(t1, t2) singleton.assignable?(t1,t2) end # Answers, does the given callable accept the arguments given in args (an array or a tuple) # @param callable [Puppet::Pops::Types::PCallableType] - the callable # @param args [Puppet::Pops::Types::PArrayType, Puppet::Pops::Types::PTupleType] args optionally including a lambda callable at the end # @return [Boolan] true if the callable accepts the arguments # # @api public def self.callable?(callable, args) singleton.callable?(callable, args) end # Produces a String representation of the given type. # @param t [Puppet::Pops::Types::PAnyType] the type to produce a string form # @return [String] the type in string form # # @api public # def self.string(t) singleton.string(t) end # @api public def self.infer(o) singleton.infer(o) end # @api public def self.generalize!(o) singleton.generalize!(o) end # @api public def self.infer_set(o) singleton.infer_set(o) end # @api public def self.debug_string(t) singleton.debug_string(t) end # @api public def self.enumerable(t) singleton.enumerable(t) end # @api private def self.singleton() @tc_instance ||= new end # @api public # def initialize @@assignable_visitor ||= Puppet::Pops::Visitor.new(nil,"assignable",1,1) @@infer_visitor ||= Puppet::Pops::Visitor.new(nil,"infer",0,0) @@infer_set_visitor ||= Puppet::Pops::Visitor.new(nil,"infer_set",0,0) @@instance_of_visitor ||= Puppet::Pops::Visitor.new(nil,"instance_of",1,1) @@string_visitor ||= Puppet::Pops::Visitor.new(nil,"string",0,0) @@inspect_visitor ||= Puppet::Pops::Visitor.new(nil,"debug_string",0,0) @@enumerable_visitor ||= Puppet::Pops::Visitor.new(nil,"enumerable",0,0) @@extract_visitor ||= Puppet::Pops::Visitor.new(nil,"extract",0,0) @@generalize_visitor ||= Puppet::Pops::Visitor.new(nil,"generalize",0,0) @@callable_visitor ||= Puppet::Pops::Visitor.new(nil,"callable",1,1) da = Types::PArrayType.new() da.element_type = Types::PDataType.new() @data_array = da h = Types::PHashType.new() h.element_type = Types::PDataType.new() h.key_type = Types::PScalarType.new() @data_hash = h @data_t = Types::PDataType.new() @scalar_t = Types::PScalarType.new() @numeric_t = Types::PNumericType.new() @t = Types::PAnyType.new() # Data accepts a Tuple that has 0-infinity Data compatible entries (e.g. a Tuple equivalent to Array). data_tuple = Types::PTupleType.new() data_tuple.addTypes(Types::PDataType.new()) data_tuple.size_type = Types::PIntegerType.new() data_tuple.size_type.from = 0 data_tuple.size_type.to = nil # infinity @data_tuple_t = data_tuple # Variant type compatible with Data data_variant = Types::PVariantType.new() data_variant.addTypes(@data_hash.copy) data_variant.addTypes(@data_array.copy) data_variant.addTypes(Types::PScalarType.new) data_variant.addTypes(Types::PUndefType.new) data_variant.addTypes(@data_tuple_t.copy) @data_variant_t = data_variant collection_default_size = Types::PIntegerType.new() collection_default_size.from = 0 collection_default_size.to = nil # infinity @collection_default_size_t = collection_default_size non_empty_string = Types::PStringType.new non_empty_string.size_type = Types::PIntegerType.new() non_empty_string.size_type.from = 1 non_empty_string.size_type.to = nil # infinity @non_empty_string_t = non_empty_string @nil_t = Types::PUndefType.new end # Convenience method to get a data type for comparisons # @api private the returned value may not be contained in another element # def data @data_t end # Convenience method to get a variant compatible with the Data type. # @api private the returned value may not be contained in another element # def data_variant @data_variant_t end def self.data_variant singleton.data_variant end # Answers the question 'is it possible to inject an instance of the given class' # A class is injectable if it has a special *assisted inject* class method called `inject` taking # an injector and a scope as argument, or if it has a zero args `initialize` method. # # @param klazz [Class, PRuntimeType] the class/type to check if it is injectable # @return [Class, nil] the injectable Class, or nil if not injectable # @api public # def injectable_class(klazz) # Handle case when we get a PType instead of a class if klazz.is_a?(Types::PRuntimeType) klazz = Puppet::Pops::Types::ClassLoader.provide(klazz) end # data types can not be injected (check again, it is not safe to assume that given RubyRuntime klazz arg was ok) return false unless type(klazz).is_a?(Types::PRuntimeType) if (klazz.respond_to?(:inject) && klazz.method(:inject).arity() == -4) || klazz.instance_method(:initialize).arity() == 0 klazz else nil end end # Answers 'can an instance of type t2 be assigned to a variable of type t'. # Does not accept nil/undef unless the type accepts it. # # @api public # def assignable?(t, t2) if t.is_a?(Class) t = type(t) end if t2.is_a?(Class) t2 = type(t2) end t2_class = t2.class # Unit can be assigned to anything return true if t2_class == Types::PUnitType if t2_class == Types::PVariantType # Assignable if all contained types are assignable t2.types.all? { |vt| @@assignable_visitor.visit_this_1(self, t, vt) } else # Turn NotUndef[T] into T when T is not assignable from Undef if t2_class == Types::PNotUndefType && !(t2.type.nil? || assignable?(t2.type, @nil_t)) assignable?(t, t2.type) else @@assignable_visitor.visit_this_1(self, t, t2) end end end # Returns an enumerable if the t represents something that can be iterated def enumerable(t) @@enumerable_visitor.visit_this_0(self, t) end # Answers, does the given callable accept the arguments given in args (an array or a tuple) # def callable?(callable, args) return false if !self.class.is_kind_of_callable?(callable) # Note that polymorphism is for the args type, the callable is always a callable @@callable_visitor.visit_this_1(self, args, callable) end # Answers if the two given types describe the same type def equals(left, right) return false unless left.is_a?(Types::PAnyType) && right.is_a?(Types::PAnyType) # Types compare per class only - an extra test must be made if the are mutually assignable # to find all types that represent the same type of instance # left == right || (assignable?(right, left) && assignable?(left, right)) end # Answers 'what is the Puppet Type corresponding to the given Ruby class' # @param c [Class] the class for which a puppet type is wanted # @api public # def type(c) raise ArgumentError, "Argument must be a Class" unless c.is_a? Class # Can't use a visitor here since we don't have an instance of the class case when c <= Integer type = Types::PIntegerType.new() when c == Float type = Types::PFloatType.new() when c == Numeric type = Types::PNumericType.new() when c == String type = Types::PStringType.new() when c == Regexp type = Types::PRegexpType.new() when c == NilClass type = Types::PUndefType.new() when c == FalseClass, c == TrueClass type = Types::PBooleanType.new() when c == Class type = Types::PType.new() when c == Array # Assume array of data values type = Types::PArrayType.new() type.element_type = Types::PDataType.new() when c == Hash # Assume hash with scalar keys and data values type = Types::PHashType.new() type.key_type = Types::PScalarType.new() type.element_type = Types::PDataType.new() else type = Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => c.name) end type end # Generalizes value specific types. The given type is mutated and returned. # @api public def generalize!(o) @@generalize_visitor.visit_this_0(self, o) o.eAllContents.each { |x| @@generalize_visitor.visit_this_0(self, x) } o end def generalize_Object(o) # do nothing, there is nothing to change for most types end # @return [Boolean] true if the given argument is contained in a struct element key def is_struct_element_key?(o) c = o.eContainer if c.is_a?(Types::POptionalType) o = c c = c.eContainer end c.is_a?(Types::PStructElement) && c.key_type.equal?(o) end private :is_struct_element_key? def generalize_PStringType(o) # Skip generalization if the string is contained in a PStructElement key. unless is_struct_element_key?(o) o.values = [] o.size_type = nil end end def generalize_PCollectionType(o) # erase the size constraint from Array and Hash (if one exists, it is transformed to -Infinity - + Infinity, which is # not desirable. o.size_type = nil end def generalize_PFloatType(o) o.to = nil o.from = nil end def generalize_PIntegerType(o) o.to = nil o.from = nil end # Answers 'what is the single common Puppet Type describing o', or if o is an Array or Hash, what is the # single common type of the elements (or keys and elements for a Hash). # @api public # def infer(o) @@infer_visitor.visit_this_0(self, o) end def infer_generic(o) result = generalize!(infer(o)) result end # Answers 'what is the set of Puppet Types of o' # @api public # def infer_set(o) @@infer_set_visitor.visit_this_0(self, o) end def instance_of(t, o) @@instance_of_visitor.visit_this_1(self, t, o) end def instance_of_Object(t, o) # Undef is Undef and Any, but nothing else when checking instance? return false if (o.nil?) && t.class != Types::PAnyType assignable?(t, infer(o)) end # Anything is an instance of Unit # @api private def instance_of_PUnitType(t, o) true end def instance_of_PArrayType(t, o) return false unless o.is_a?(Array) return false unless o.all? {|element| instance_of(t.element_type, element) } size_t = t.size_type || @collection_default_size_t # optimize by calling directly return instance_of_PIntegerType(size_t, o.size) end # @api private def instance_of_PIntegerType(t, o) return false unless o.is_a?(Integer) x = t.from x = -Float::INFINITY if x.nil? || x == :default y = t.to y = Float::INFINITY if y.nil? || y == :default return x < y ? x <= o && y >= o : y <= o && x >= o end # @api private def instance_of_PStringType(t, o) return false unless o.is_a?(String) # true if size compliant size_t = t.size_type if size_t.nil? || instance_of_PIntegerType(size_t, o.size) values = t.values values.empty? || values.include?(o) else false end end def instance_of_PTupleType(t, o) return false unless o.is_a?(Array) # compute the tuple's min/max size, and check if that size matches size_t = t.size_type || Puppet::Pops::Types::TypeFactory.range(*t.size_range) return false unless instance_of_PIntegerType(size_t, o.size) o.each_with_index do |element, index| return false unless instance_of(t.types[index] || t.types[-1], element) end true end def instance_of_PStructType(t, o) return false unless o.is_a?(Hash) matched = 0 t.elements.all? do |e| key = e.name v = o[key] if v.nil? && !o.include?(key) # Entry is missing. Only OK when key is optional assignable?(e.key_type, @nil_t) else matched += 1 instance_of(e.value_type, v) end end && matched == o.size end def instance_of_PHashType(t, o) return false unless o.is_a?(Hash) key_t = t.key_type element_t = t.element_type return false unless o.keys.all? {|key| instance_of(key_t, key) } && o.values.all? {|value| instance_of(element_t, value) } size_t = t.size_type || @collection_default_size_t # optimize by calling directly return instance_of_PIntegerType(size_t, o.size) end def instance_of_PDataType(t, o) instance_of(@data_variant_t, o) end def instance_of_PNotUndefType(t, o) !(o.nil? || o == :undef) && (t.type.nil? || instance_of(t.type, o)) end def instance_of_PUndefType(t, o) o.nil? || o == :undef end def instance_of_POptionalType(t, o) instance_of_PUndefType(t, o) || instance_of(t.optional_type, o) end def instance_of_PVariantType(t, o) # instance of variant if o is instance? of any of variant's types t.types.any? { |option_t| instance_of(option_t, o) } end # Answers 'is o an instance of type t' # @api public # def self.instance?(t, o) singleton.instance_of(t,o) end # Answers 'is o an instance of type t' # @api public # def instance?(t, o) instance_of(t,o) end # Answers if t is a puppet type # @api public # def is_ptype?(t) return t.is_a?(Types::PAnyType) end # Answers if t represents the puppet type PUndefType # @api public # def is_pnil?(t) return t.nil? || t.is_a?(Types::PUndefType) end # Answers, 'What is the common type of t1 and t2?' # # TODO: The current implementation should be optimized for performance # # @api public # def common_type(t1, t2) raise ArgumentError, 'two types expected' unless (is_ptype?(t1) || is_pnil?(t1)) && (is_ptype?(t2) || is_pnil?(t2)) # TODO: This is not right since Scalar U Undef is Any # if either is nil, the common type is the other if is_pnil?(t1) return t2 elsif is_pnil?(t2) return t1 end # If either side is Unit, it is the other type if t1.is_a?(Types::PUnitType) return t2 elsif t2.is_a?(Types::PUnitType) return t1 end # Simple case, one is assignable to the other if assignable?(t1, t2) return t1 elsif assignable?(t2, t1) return t2 end # when both are arrays, return an array with common element type if t1.is_a?(Types::PArrayType) && t2.is_a?(Types::PArrayType) type = Types::PArrayType.new() type.element_type = common_type(t1.element_type, t2.element_type) return type end # when both are hashes, return a hash with common key- and element type if t1.is_a?(Types::PHashType) && t2.is_a?(Types::PHashType) type = Types::PHashType.new() type.key_type = common_type(t1.key_type, t2.key_type) type.element_type = common_type(t1.element_type, t2.element_type) return type end # when both are host-classes, reduce to PHostClass[] (since one was not assignable to the other) if t1.is_a?(Types::PHostClassType) && t2.is_a?(Types::PHostClassType) return Types::PHostClassType.new() end # when both are resources, reduce to Resource[T] or Resource[] (since one was not assignable to the other) if t1.is_a?(Types::PResourceType) && t2.is_a?(Types::PResourceType) result = Types::PResourceType.new() # only Resource[] unless the type name is the same if t1.type_name == t2.type_name then result.type_name = t1.type_name end # the cross assignability test above has already determined that they do not have the same type and title return result end # Integers have range, expand the range to the common range if t1.is_a?(Types::PIntegerType) && t2.is_a?(Types::PIntegerType) t1range = from_to_ordered(t1.from, t1.to) t2range = from_to_ordered(t2.from, t2.to) t = Types::PIntegerType.new() from = [t1range[0], t2range[0]].min to = [t1range[1], t2range[1]].max t.from = from unless from == Float::INFINITY t.to = to unless to == Float::INFINITY return t end # Floats have range, expand the range to the common range if t1.is_a?(Types::PFloatType) && t2.is_a?(Types::PFloatType) t1range = from_to_ordered(t1.from, t1.to) t2range = from_to_ordered(t2.from, t2.to) t = Types::PFloatType.new() from = [t1range[0], t2range[0]].min to = [t1range[1], t2range[1]].max t.from = from unless from == Float::INFINITY t.to = to unless to == Float::INFINITY return t end if t1.is_a?(Types::PStringType) && t2.is_a?(Types::PStringType) t = Types::PStringType.new() t.values = t1.values | t2.values unless t1.values.empty? || t2.values.empty? t.size_type = common_type(t1.size_type, t2.size_type) unless t1.size_type.nil? || t2.size_type.nil? return t end if t1.is_a?(Types::PPatternType) && t2.is_a?(Types::PPatternType) t = Types::PPatternType.new() # must make copies since patterns are contained types, not data-types t.patterns = (t1.patterns | t2.patterns).map(&:copy) return t end if t1.is_a?(Types::PEnumType) && t2.is_a?(Types::PEnumType) # The common type is one that complies with either set t = Types::PEnumType.new t.values = t1.values | t2.values return t end if t1.is_a?(Types::PVariantType) && t2.is_a?(Types::PVariantType) # The common type is one that complies with either set t = Types::PVariantType.new t.types = (t1.types | t2.types).map(&:copy) return t end if t1.is_a?(Types::PRegexpType) && t2.is_a?(Types::PRegexpType) # if they were identical, the general rule would return a parameterized regexp # since they were not, the result is a generic regexp type return Types::PPatternType.new() end if t1.is_a?(Types::PCallableType) && t2.is_a?(Types::PCallableType) # They do not have the same signature, and one is not assignable to the other, # what remains is the most general form of Callable return Types::PCallableType.new() end # Common abstract types, from most specific to most general if common_numeric?(t1, t2) return Types::PNumericType.new() end if common_scalar?(t1, t2) return Types::PScalarType.new() end if common_data?(t1,t2) return Types::PDataType.new() end # Meta types Type[Integer] + Type[String] => Type[Data] if t1.is_a?(Types::PType) && t2.is_a?(Types::PType) type = Types::PType.new() type.type = common_type(t1.type, t2.type) return type end # If both are Runtime types if t1.is_a?(Types::PRuntimeType) && t2.is_a?(Types::PRuntimeType) if t1.runtime == t2.runtime && t1.runtime_type_name == t2.runtime_type_name return t1 end # finding the common super class requires that names are resolved to class # NOTE: This only supports runtime type of :ruby c1 = Types::ClassLoader.provide_from_type(t1) c2 = Types::ClassLoader.provide_from_type(t2) if c1 && c2 c2_superclasses = superclasses(c2) superclasses(c1).each do|c1_super| c2_superclasses.each do |c2_super| if c1_super == c2_super return Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => c1_super.name) end end end end end # They better both be Any type, or the wrong thing was asked and nil is returned if t1.is_a?(Types::PAnyType) && t2.is_a?(Types::PAnyType) return Types::PAnyType.new() end end # Produces the superclasses of the given class, including the class def superclasses(c) result = [c] while s = c.superclass result << s c = s end result end # Produces a string representing the type # @api public # def string(t) @@string_visitor.visit_this_0(self, t) end # Produces a debug string representing the type (possibly with more information that the regular string format) # @api public # def debug_string(t) @@inspect_visitor.visit_this_0(self, t) end # Reduces an enumerable of types to a single common type. # @api public # def reduce_type(enumerable) enumerable.reduce(nil) {|memo, t| common_type(memo, t) } end # Reduce an enumerable of objects to a single common type # @api public # def infer_and_reduce_type(enumerable) reduce_type(enumerable.collect() {|o| infer(o) }) end # The type of all classes is PType # @api private # def infer_Class(o) Types::PType.new() end # @api private def infer_Closure(o) o.type() end # @api private def infer_Function(o) o.class.dispatcher.to_type end # @api private def infer_Object(o) Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => o.class.name) end # The type of all types is PType # @api private # def infer_PAnyType(o) type = Types::PType.new() type.type = o.copy type end # The type of all types is PType # This is the metatype short circuit. # @api private # def infer_PType(o) type = Types::PType.new() type.type = o.copy type end # @api private def infer_String(o) t = Types::PStringType.new() t.addValues(o) t.size_type = size_as_type(o) t end # @api private def infer_Float(o) t = Types::PFloatType.new() t.from = o t.to = o t end # @api private def infer_Integer(o) t = Types::PIntegerType.new() t.from = o t.to = o t end # @api private def infer_Regexp(o) t = Types::PRegexpType.new() t.pattern = o.source t end # @api private def infer_NilClass(o) Types::PUndefType.new() end # @api private # @param o [Proc] def infer_Proc(o) min = 0 max = 0 mapped_types = o.parameters.map do |p| case p[0] when :rest max = :default break @t when :req min += 1 end max += 1 @t end mapped_types << min mapped_types << max Types::TypeFactory.callable(*mapped_types) end # @api private def infer_PuppetProc(o) infer_Closure(o.closure) end # Inference of :default as PDefaultType, and all other are Ruby[Symbol] # @api private def infer_Symbol(o) case o when :default Types::PDefaultType.new() else infer_Object(o) end end # @api private def infer_TrueClass(o) Types::PBooleanType.new() end # @api private def infer_FalseClass(o) Types::PBooleanType.new() end # @api private # A Puppet::Parser::Resource, or Puppet::Resource # def infer_Resource(o) t = Types::PResourceType.new() t.type_name = o.type.to_s.downcase # Only Puppet::Resource can have a title that is a symbol :undef, a PResource cannot. # A mapping must be made to empty string. A nil value will result in an error later title = o.title t.title = (:undef == title ? '' : title) type = Types::PType.new() type.type = t type end # @api private def infer_Array(o) type = Types::PArrayType.new() type.element_type = if o.empty? Types::PUndefType.new() else infer_and_reduce_type(o) end type.size_type = size_as_type(o) type end # @api private def infer_Hash(o) type = Types::PHashType.new() if o.empty? ktype = Types::PUndefType.new() etype = Types::PUndefType.new() else ktype = infer_and_reduce_type(o.keys()) etype = infer_and_reduce_type(o.values()) end type.key_type = ktype type.element_type = etype type.size_type = size_as_type(o) type end def size_as_type(collection) size = collection.size t = Types::PIntegerType.new() t.from = size t.to = size t end # Common case for everything that intrinsically only has a single type def infer_set_Object(o) infer(o) end def infer_set_Array(o) if o.empty? type = Types::PArrayType.new() type.element_type = Types::PUndefType.new() type.size_type = size_as_type(o) else type = Types::PTupleType.new() type.types = o.map() {|x| infer_set(x) } end type end def infer_set_Hash(o) if o.empty? type = Types::PHashType.new type.key_type = Types::PUndefType.new type.element_type = Types::PUndefType.new type.size_type = size_as_type(o) elsif o.keys.all? {|k| instance_of_PStringType(@non_empty_string_t, k) } type = Types::PStructType.new type.elements = o.map do |k,v| element = Types::PStructElement.new element.key_type = infer_String(k) element.value_type = infer_set(v) element end else type = Types::PHashType.new ktype = Types::PVariantType.new ktype.types = o.keys.map {|k| infer_set(k) } etype = Types::PVariantType.new etype.types = o.values.map {|e| infer_set(e) } type.key_type = unwrap_single_variant(ktype) type.element_type = unwrap_single_variant(etype) type.size_type = size_as_type(o) end type end def unwrap_single_variant(possible_variant) if possible_variant.is_a?(Types::PVariantType) && possible_variant.types.size == 1 possible_variant.types[0] else possible_variant end end # False in general type calculator # @api private def assignable_Object(t, t2) false end # @api private def assignable_PAnyType(t, t2) t2.is_a?(Types::PAnyType) end # @api private def assignable_PNotUndefType(t, t2) !assignable?(t2, @nil_t) && (t.type.nil? || assignable?(t.type, t2)) end # @api private def assignable_PUndefType(t, t2) # Only undef/nil is assignable to nil type t2.is_a?(Types::PUndefType) end # Anything is assignable to a Unit type # @api private def assignable_PUnitType(t, t2) true end # @api private def assignable_PDefaultType(t, t2) # Only default is assignable to default type t2.is_a?(Types::PDefaultType) end # @api private def assignable_PScalarType(t, t2) t2.is_a?(Types::PScalarType) end # @api private def assignable_PNumericType(t, t2) t2.is_a?(Types::PNumericType) end # @api private def assignable_PIntegerType(t, t2) return false unless t2.is_a?(Types::PIntegerType) trange = from_to_ordered(t.from, t.to) t2range = from_to_ordered(t2.from, t2.to) # If t2 min and max are within the range of t trange[0] <= t2range[0] && trange[1] >= t2range[1] end # Transform int range to a size constraint # if range == nil the constraint is 1,1 # if range.from == nil min size = 1 # if range.to == nil max size == Infinity # def size_range(range) return [1,1] if range.nil? from = range.from to = range.to x = from.nil? ? 1 : from y = to.nil? ? Float::INFINITY : to if x < y [x, y] else [y, x] end end # @api private def from_to_ordered(from, to) x = (from.nil? || from == :default) ? -Float::INFINITY : from y = (to.nil? || to == :default) ? Float::INFINITY : to if x < y [x, y] else [y, x] end end # @api private def assignable_PVariantType(t, t2) # Data is a specific variant t2 = @data_variant_t if t2.is_a?(Types::PDataType) if t2.is_a?(Types::PVariantType) # A variant is assignable if all of its options are assignable to one of this type's options return true if t == t2 t2.types.all? do |other| # if the other is a Variant, all of its options, but be assignable to one of this type's options other = other.is_a?(Types::PDataType) ? @data_variant_t : other if other.is_a?(Types::PVariantType) assignable?(t, other) else t.types.any? {|option_t| assignable?(option_t, other) } end end else # A variant is assignable if t2 is assignable to any of its types t.types.any? { |option_t| assignable?(option_t, t2) } end end # Catch all not callable combinations def callable_Object(o, callable_t) false end def callable_PTupleType(args_tuple, callable_t) if args_tuple.size_type raise ArgumentError, "Callable tuple may not have a size constraint when used as args" end params_tuple = callable_t.param_types param_block_t = callable_t.block_type arg_types = args_tuple.types arg_block_t = arg_types.last() if self.class.is_kind_of_callable?(arg_block_t) # Can't pass a block to a callable that doesn't accept one return false if param_block_t.nil? # Check that the block is of the right tyṕe return false unless assignable?(param_block_t, arg_block_t) # Check other arguments arg_count = arg_types.size - 1 params_size_t = params_tuple.size_type || Types::TypeFactory.range(*params_tuple.size_range) return false unless assignable?(params_size_t, Types::TypeFactory.range(arg_count, arg_count)) ctypes = params_tuple.types args_assignable = false arg_count.times do |index| return false unless assignable?((ctypes[index] || ctypes[-1]), arg_types[index]) end return true end # Check that tuple is assignable and that the block (if declared) is optional assignable?(params_tuple, args_tuple) && (param_block_t.nil? || assignable?(param_block_t, @nil_t)) end # @api private def self.is_kind_of_callable?(t, optional = true) case t when Types::PCallableType true when Types::POptionalType optional && is_kind_of_callable?(t.optional_type, optional) when Types::PVariantType t.types.all? {|t2| is_kind_of_callable?(t2, optional) } else false end end # @api private def self.is_kind_of_optional?(t, optional = true) case t when Types::POptionalType true when Types::PVariantType t.types.all? {|t2| is_kind_of_optional?(t2, optional) } else false end end def callable_PArrayType(args_array, callable_t) return false unless assignable?(callable_t.param_types, args_array) # does not support calling with a block, but have to check that callable is ok with missing block assignable?(callable_t.block_type || @nil_t, @nil_t) end def callable_PUndefType(nil_t, callable_t) # if callable_t is Optional (or indeed PUndefType), this means that 'missing callable' is accepted assignable?(callable_t, nil_t) end def callable_PCallableType(given_callable_t, required_callable_t) # If the required callable is euqal or more specific than the given, the given is callable assignable?(required_callable_t, given_callable_t) end def max(a,b) a >=b ? a : b end def min(a,b) a <= b ? a : b end def assignable_PTupleType(t, t2) return true if t == t2 || t.types.empty? && (t2.is_a?(Types::PArrayType)) size_t = t.size_type || Puppet::Pops::Types::TypeFactory.range(*t.size_range) if t2.is_a?(Types::PTupleType) size_t2 = t2.size_type || Puppet::Pops::Types::TypeFactory.range(*t2.size_range) # not assignable if the number of types in t2 is outside number of types in t1 if assignable?(size_t, size_t2) t2.types.size.times do |index| return false unless assignable?((t.types[index] || t.types[-1]), t2.types[index]) end return true else return false end elsif t2.is_a?(Types::PArrayType) t2_entry = t2.element_type # Array of anything can not be assigned (unless tuple is tuple of anything) - this case # was handled at the top of this method. # return false if t2_entry.nil? size_t = t.size_type || Puppet::Pops::Types::TypeFactory.range(*t.size_range) size_t2 = t2.size_type || @collection_default_size_t return false unless assignable?(size_t, size_t2) min(t.types.size, size_t2.range()[1]).times do |index| return false unless assignable?((t.types[index] || t.types[-1]), t2_entry) end true else false end end # Produces the tuple entry at the given index given a tuple type, its from/to constraints on the last # type, and an index. # Produces nil if the index is out of bounds # from must be less than to, and from may not be less than 0 # # @api private # def tuple_entry_at(tuple_t, from, to, index) regular = (tuple_t.types.size - 1) if index < regular tuple_t.types[index] elsif index < regular + to # in the varargs part tuple_t.types[-1] else nil end end # @api private # def assignable_PStructType(t, t2) if t2.is_a?(Types::PStructType) h2 = t2.hashed_elements matched = 0 t.elements.all? do |e1| e2 = h2[e1.name] if e2.nil? assignable?(e1.key_type, @nil_t) else matched += 1 assignable?(e1.key_type, e2.key_type) && assignable?(e1.value_type, e2.value_type) end end && matched == h2.size elsif t2.is_a?(Types::PHashType) required = 0 required_elements_assignable = t.elements.all? do |e| if assignable?(e.key_type, @nil_t) true else required += 1 assignable?(e.value_type, t2.element_type) end end if required_elements_assignable size_t2 = t2.size_type || @collection_default_size_t size_t = Types::PIntegerType.new size_t.from = required size_t.to = t.elements.size assignable_PIntegerType(size_t, size_t2) end else false end end # @api private def assignable_POptionalType(t, t2) return true if t2.is_a?(Types::PUndefType) return true if t.optional_type.nil? if t2.is_a?(Types::POptionalType) assignable?(t.optional_type, t2.optional_type || @t) else assignable?(t.optional_type, t2) end end # @api private def assignable_PEnumType(t, t2) return true if t == t2 if t.values.empty? return true if t2.is_a?(Types::PStringType) || t2.is_a?(Types::PEnumType) || t2.is_a?(Types::PPatternType) end case t2 when Types::PStringType # if the set of strings are all found in the set of enums !t2.values.empty?() && t2.values.all? { |s| t.values.any? { |e| e == s }} when Types::PVariantType t2.types.all? {|variant_t| assignable_PEnumType(t, variant_t) } when Types::PEnumType # empty means any enum return true if t.values.empty? !t2.values.empty? && t2.values.all? { |s| t.values.any? {|e| e == s }} else false end end # @api private def assignable_PStringType(t, t2) if t.values.empty? # A general string is assignable by any other string or pattern restricted string # if the string has a size constraint it does not match since there is no reasonable way # to compute the min/max length a pattern will match. For enum, it is possible to test that # each enumerator value is within range size_t = t.size_type || @collection_default_size_t case t2 when Types::PStringType # true if size compliant size_t2 = t2.size_type || @collection_default_size_t assignable_PIntegerType(size_t, size_t2) when Types::PPatternType # true if size constraint is at least 0 to +Infinity (which is the same as the default) assignable_PIntegerType(size_t, @collection_default_size_t) when Types::PEnumType if t2.values && !t2.values.empty? # true if all enum values are within range min, max = t2.values.map(&:size).minmax trange = from_to_ordered(size_t.from, size_t.to) t2range = [min, max] # If t2 min and max are within the range of t trange[0] <= t2range[0] && trange[1] >= t2range[1] else # enum represents all enums, and thus all strings, a sized constrained string can thus not # be assigned any enum (unless it is max size). assignable_PIntegerType(size_t, @collection_default_size_t) end else # no other type matches string false end elsif t2.is_a?(Types::PStringType) # A specific string acts as a set of strings - must have exactly the same strings # In this case, size does not matter since the definition is very precise anyway Set.new(t.values) == Set.new(t2.values) else # All others are false, since no other type describes the same set of specific strings false end end # @api private def assignable_PPatternType(t, t2) return true if t == t2 case t2 when Types::PStringType, Types::PEnumType values = t2.values when Types::PVariantType return t2.types.all? {|variant_t| assignable_PPatternType(t, variant_t) } when Types::PPatternType return t.patterns.empty? ? true : false else return false end if t2.values.empty? # Strings / Enums (unknown which ones) cannot all match a pattern, but if there is no pattern it is ok # (There should really always be a pattern, but better safe than sorry). return t.patterns.empty? ? true : false end # all strings in String/Enum type must match one of the patterns in Pattern type, # or Pattern represents all Patterns == all Strings regexps = t.patterns.map {|p| p.regexp } regexps.empty? || t2.values.all? { |v| regexps.any? {|re| re.match(v) } } end # @api private def assignable_PFloatType(t, t2) return false unless t2.is_a?(Types::PFloatType) trange = from_to_ordered(t.from, t.to) t2range = from_to_ordered(t2.from, t2.to) # If t2 min and max are within the range of t trange[0] <= t2range[0] && trange[1] >= t2range[1] end # @api private def assignable_PBooleanType(t, t2) t2.is_a?(Types::PBooleanType) end # @api private def assignable_PRegexpType(t, t2) t2.is_a?(Types::PRegexpType) && (t.pattern.nil? || t.pattern == t2.pattern) end # @api private def assignable_PCallableType(t, t2) return false unless t2.is_a?(Types::PCallableType) # nil param_types means, any other Callable is assignable return true if t.param_types.nil? # NOTE: these tests are made in reverse as it is calling the callable that is constrained # (it's lower bound), not its upper bound return false unless assignable?(t2.param_types, t.param_types) # names are ignored, they are just information # Blocks must be compatible this_block_t = t.block_type || @nil_t that_block_t = t2.block_type || @nil_t assignable?(that_block_t, this_block_t) end # @api private def assignable_PCollectionType(t, t2) size_t = t.size_type || @collection_default_size_t case t2 when Types::PCollectionType size_t2 = t2.size_type || @collection_default_size_t assignable_PIntegerType(size_t, size_t2) when Types::PTupleType # compute the tuple's min/max size, and check if that size matches from, to = size_range(t2.size_type) t2s = Types::PIntegerType.new() t2s.from = t2.types.size - 1 + from t2s.to = t2.types.size - 1 + to assignable_PIntegerType(size_t, t2s) when Types::PStructType from = to = t2.elements.size t2s = Types::PIntegerType.new() t2s.from = from t2s.to = to assignable_PIntegerType(size_t, t2s) else false end end # @api private def assignable_PType(t, t2) return false unless t2.is_a?(Types::PType) return true if t.type.nil? # wide enough to handle all types return false if t2.type.nil? # wider than t assignable?(t.type, t2.type) end # Array is assignable if t2 is an Array and t2's element type is assignable, or if t2 is a Tuple # @api private def assignable_PArrayType(t, t2) if t2.is_a?(Types::PArrayType) return false unless t.element_type.nil? || assignable?(t.element_type, t2.element_type || @t) assignable_PCollectionType(t, t2) elsif t2.is_a?(Types::PTupleType) return false unless t.element_type.nil? || t2.types.all? {|t2_element| assignable?(t.element_type, t2_element) } t2_regular = t2.types[0..-2] t2_ranged = t2.types[-1] t2_from, t2_to = size_range(t2.size_type) t2_required = t2_regular.size + t2_from t_entry = t.element_type # Tuple of anything can not be assigned (unless array is tuple of anything) - this case # was handled at the top of this method. # return false if t_entry.nil? # array type may be size constrained size_t = t.size_type || @collection_default_size_t min, max = size_t.range # Tuple with fewer min entries can not be assigned return false if t2_required < min # Tuple with more optionally available entries can not be assigned return false if t2_regular.size + t2_to > max # each tuple type must be assignable to the element type t2_required.times do |index| t2_entry = tuple_entry_at(t2, t2_from, t2_to, index) return false unless assignable?(t_entry, t2_entry) end # ... and so must the last, possibly optional (ranged) type return assignable?(t_entry, t2_ranged) else false end end # Hash is assignable if t2 is a Hash and t2's key and element types are assignable # @api private def assignable_PHashType(t, t2) case t2 when Types::PHashType return true if (t.size_type.nil? || t.size_type.from == 0) && t2.is_the_empty_hash? return false unless t.key_type.nil? || assignable?(t.key_type, t2.key_type || @t) return false unless t.element_type.nil? || assignable?(t.element_type, t2.element_type || @t) assignable_PCollectionType(t, t2) when Types::PStructType # hash must accept String as key type # hash must accept all value types # hash must accept the size of the struct size_t = t.size_type || @collection_default_size_t min, max = size_t.range struct_size = t2.elements.size key_type = t.key_type element_type = t.element_type ( struct_size >= min && struct_size <= max && t2.elements.all? {|e| (key_type.nil? || instance_of(key_type, e.name)) && (element_type.nil? || assignable?(element_type, e.value_type)) }) else false end end # @api private def assignable_PCatalogEntryType(t1, t2) t2.is_a?(Types::PCatalogEntryType) end # @api private def assignable_PHostClassType(t1, t2) return false unless t2.is_a?(Types::PHostClassType) # Class = Class[name}, Class[name] != Class return true if t1.class_name.nil? # Class[name] = Class[name] return t1.class_name == t2.class_name end # @api private def assignable_PResourceType(t1, t2) return false unless t2.is_a?(Types::PResourceType) return true if t1.type_name.nil? return false if t1.type_name != t2.type_name return true if t1.title.nil? return t1.title == t2.title end # Data is assignable by other Data and by Array[Data] and Hash[Scalar, Data] # @api private def assignable_PDataType(t, t2) # We cannot put the NotUndefType[Data] in the @data_variant_t since that causes an endless recursion case t2 when Types::PDataType true when Types::PNotUndefType assignable?(t, t2.type || @t) else assignable?(@data_variant_t, t2) end end # Assignable if t2's has the same runtime and the runtime name resolves to # a class that is the same or subclass of t1's resolved runtime type name # @api private def assignable_PRuntimeType(t1, t2) return false unless t2.is_a?(Types::PRuntimeType) return false unless t1.runtime == t2.runtime return true if t1.runtime_type_name.nil? # t1 is wider return false if t2.runtime_type_name.nil? # t1 not nil, so t2 can not be wider # NOTE: This only supports Ruby, must change when/if the set of runtimes is expanded c1 = class_from_string(t1.runtime_type_name) c2 = class_from_string(t2.runtime_type_name) return false unless c1.is_a?(Class) && c2.is_a?(Class) !!(c2 <= c1) end # @api private def debug_string_Object(t) string(t) end # @api private def string_PType(t) if t.type.nil? "Type" else "Type[#{string(t.type)}]" end end # @api private def string_NilClass(t) ; '?' ; end # @api private def string_String(t) ; t ; end # @api private def string_Symbol(t) ; t.to_s ; end def string_PAnyType(t) ; "Any" ; end # @api private def string_PUndefType(t) ; 'Undef' ; end # @api private def string_PDefaultType(t) ; 'Default' ; end # @api private def string_PBooleanType(t) ; "Boolean" ; end # @api private def string_PScalarType(t) ; "Scalar" ; end # @api private def string_PDataType(t) ; "Data" ; end # @api private def string_PNumericType(t) ; "Numeric" ; end # @api private def string_PIntegerType(t) range = range_array_part(t) unless range.empty? "Integer[#{range.join(', ')}]" else "Integer" end end # Produces a string from an Integer range type that is used inside other type strings # @api private def range_array_part(t) return [] if t.nil? || (t.from.nil? && t.to.nil?) [t.from.nil? ? 'default' : t.from , t.to.nil? ? 'default' : t.to ] end # @api private def string_PFloatType(t) range = range_array_part(t) unless range.empty? "Float[#{range.join(', ')}]" else "Float" end end # @api private def string_PRegexpType(t) t.pattern.nil? ? "Regexp" : "Regexp[#{t.regexp.inspect}]" end # @api private def string_PStringType(t) # skip values in regular output - see debug_string range = range_array_part(t.size_type) unless range.empty? "String[#{range.join(', ')}]" else "String" end end # @api private def debug_string_PStringType(t) range = range_array_part(t.size_type) range_part = range.empty? ? '' : '[' << range.join(' ,') << '], ' "String[" << range_part << (t.values.map {|s| "'#{s}'" }).join(', ') << ']' end # @api private def string_PEnumType(t) return "Enum" if t.values.empty? "Enum[" << t.values.map {|s| "'#{s}'" }.join(', ') << ']' end # @api private def string_PVariantType(t) return "Variant" if t.types.empty? "Variant[" << t.types.map {|t2| string(t2) }.join(', ') << ']' end # @api private def string_PTupleType(t) range = range_array_part(t.size_type) return "Tuple" if t.types.empty? s = "Tuple[" << t.types.map {|t2| string(t2) }.join(', ') unless range.empty? s << ", " << range.join(', ') end s << "]" s end # @api private def string_PCallableType(t) # generic return "Callable" if t.param_types.nil? if t.param_types.types.empty? range = [0, 0] else range = range_array_part(t.param_types.size_type) end # translate to string, and skip Unit types types = t.param_types.types.map {|t2| string(t2) unless t2.class == Types::PUnitType }.compact s = "Callable[" << types.join(', ') unless range.empty? (s << ', ') unless types.empty? s << range.join(', ') end # Add block T last (after min, max) if present) # unless t.block_type.nil? (s << ', ') unless types.empty? && range.empty? s << string(t.block_type) end s << "]" s end # @api private def string_PStructType(t) return "Struct" if t.elements.empty? "Struct[{" << t.elements.map {|element| string(element) }.join(', ') << "}]" end def string_PStructElement(t) k = t.key_type value_optional = assignable?(t.value_type, @nil_t) key_string = if k.is_a?(Types::POptionalType) # Output as literal String value_optional ? "'#{t.name}'" : string(k) else value_optional ? "NotUndef['#{t.name}']" : "'#{t.name}'" end "#{key_string}=>#{string(t.value_type)}" end # @api private def string_PPatternType(t) return "Pattern" if t.patterns.empty? "Pattern[" << t.patterns.map {|s| "#{s.regexp.inspect}" }.join(', ') << ']' end # @api private def string_PCollectionType(t) range = range_array_part(t.size_type) unless range.empty? "Collection[#{range.join(', ')}]" else "Collection" end end # @api private def string_PUnitType(t) "Unit" end # @api private def string_PRuntimeType(t) ; "Runtime[#{string(t.runtime)}, #{string(t.runtime_type_name)}]" ; end # @api private def string_PArrayType(t) parts = [string(t.element_type)] + range_array_part(t.size_type) "Array[#{parts.join(', ')}]" end # @api private def string_PHashType(t) parts = [string(t.key_type), string(t.element_type)] + range_array_part(t.size_type) "Hash[#{parts.join(', ')}]" end # @api private def string_PCatalogEntryType(t) "CatalogEntry" end # @api private def string_PHostClassType(t) if t.class_name "Class[#{t.class_name}]" else "Class" end end # @api private def string_PResourceType(t) if t.type_name if t.title "#{capitalize_segments(t.type_name)}['#{t.title}']" else capitalize_segments(t.type_name) end else "Resource" end end # @api private def string_PNotUndefType(t) contained_type = t.type if contained_type.nil? || contained_type.class == Puppet::Pops::Types::PAnyType 'NotUndef' else if contained_type.is_a?(Puppet::Pops::Types::PStringType) && contained_type.values.size == 1 "NotUndef['#{contained_type.values[0]}']" else "NotUndef[#{string(contained_type)}]" end end end def string_POptionalType(t) optional_type = t.optional_type if optional_type.nil? "Optional" else if optional_type.is_a?(Puppet::Pops::Types::PStringType) && optional_type.values.size == 1 "Optional['#{optional_type.values[0]}']" else "Optional[#{string(optional_type)}]" end end end # Catches all non enumerable types # @api private def enumerable_Object(o) nil end # @api private def enumerable_PIntegerType(t) # Not enumerable if representing an infinite range return nil if t.size == Float::INFINITY t end def self.copy_as_tuple(t) case t when Types::PTupleType t.copy when Types::PArrayType # transform array to tuple result = Types::PTupleType.new result.addTypes(t.element_type.copy) result.size_type = t.size_type.nil? ? nil : t.size_type.copy result else raise ArgumentError, "Internal Error: Only Array and Tuple can be given to copy_as_tuple" end end # Debugging to_s to reduce the amount of output def to_s '[a TypeCalculator]' end private NAME_SEGMENT_SEPARATOR = '::'.freeze def capitalize_segments(s) s.split(NAME_SEGMENT_SEPARATOR).map(&:capitalize).join(NAME_SEGMENT_SEPARATOR) end def class_from_string(str) begin str.split(NAME_SEGMENT_SEPARATOR).inject(Object) do |memo, name_segment| memo.const_get(name_segment) end rescue NameError return nil end end def common_data?(t1, t2) assignable?(@data_t, t1) && assignable?(@data_t, t2) end def common_scalar?(t1, t2) assignable?(@scalar_t, t1) && assignable?(@scalar_t, t2) end def common_numeric?(t1, t2) assignable?(@numeric_t, t1) && assignable?(@numeric_t, t2) end end