// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include "include/v8config.h" #include "src/base/bits.h" #include "src/utils.h" #include "src/wasm/wasm-external-refs.h" namespace v8 { namespace internal { namespace wasm { void f32_trunc_wrapper(float* param) { *param = truncf(*param); } void f32_floor_wrapper(float* param) { *param = floorf(*param); } void f32_ceil_wrapper(float* param) { *param = ceilf(*param); } void f32_nearest_int_wrapper(float* param) { *param = nearbyintf(*param); } void f64_trunc_wrapper(double* param) { WriteDoubleValue(param, trunc(ReadDoubleValue(param))); } void f64_floor_wrapper(double* param) { WriteDoubleValue(param, floor(ReadDoubleValue(param))); } void f64_ceil_wrapper(double* param) { WriteDoubleValue(param, ceil(ReadDoubleValue(param))); } void f64_nearest_int_wrapper(double* param) { WriteDoubleValue(param, nearbyint(ReadDoubleValue(param))); } void int64_to_float32_wrapper(int64_t* input, float* output) { *output = static_cast(*input); } void uint64_to_float32_wrapper(uint64_t* input, float* output) { #if V8_CC_MSVC // With MSVC we use static_cast(uint32_t) instead of // static_cast(uint64_t) to achieve round-to-nearest-ties-even // semantics. The idea is to calculate // static_cast(high_word) * 2^32 + static_cast(low_word). To // achieve proper rounding in all cases we have to adjust the high_word // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of // the high_word if the low_word may affect the rounding of the high_word. uint32_t low_word = static_cast(*input & 0xffffffff); uint32_t high_word = static_cast(*input >> 32); float shift = static_cast(1ull << 32); // If the MSB of the high_word is set, then we make space for a rounding bit. if (high_word < 0x80000000) { high_word <<= 1; shift = static_cast(1ull << 31); } if ((high_word & 0xfe000000) && low_word) { // Set the rounding bit. high_word |= 1; } float result = static_cast(high_word); result *= shift; result += static_cast(low_word); *output = result; #else *output = static_cast(*input); #endif } void int64_to_float64_wrapper(int64_t* input, double* output) { *output = static_cast(*input); } void uint64_to_float64_wrapper(uint64_t* input, double* output) { #if V8_CC_MSVC // With MSVC we use static_cast(uint32_t) instead of // static_cast(uint64_t) to achieve round-to-nearest-ties-even // semantics. The idea is to calculate // static_cast(high_word) * 2^32 + static_cast(low_word). uint32_t low_word = static_cast(*input & 0xffffffff); uint32_t high_word = static_cast(*input >> 32); double shift = static_cast(1ull << 32); double result = static_cast(high_word); result *= shift; result += static_cast(low_word); *output = result; #else *output = static_cast(*input); #endif } int32_t float32_to_int64_wrapper(float* input, int64_t* output) { // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within int64 range which are actually // not within int64 range. if (*input >= static_cast(std::numeric_limits::min()) && *input < static_cast(std::numeric_limits::max())) { *output = static_cast(*input); return 1; } return 0; } int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) { // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within uint64 range which are actually // not within uint64 range. if (*input > -1.0 && *input < static_cast(std::numeric_limits::max())) { *output = static_cast(*input); return 1; } return 0; } int32_t float64_to_int64_wrapper(double* input, int64_t* output) { // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within int64 range which are actually // not within int64 range. if (*input >= static_cast(std::numeric_limits::min()) && *input < static_cast(std::numeric_limits::max())) { *output = static_cast(*input); return 1; } return 0; } int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) { // We use "<" here to check the upper bound because of rounding problems: With // "<=" some inputs would be considered within uint64 range which are actually // not within uint64 range. if (*input > -1.0 && *input < static_cast(std::numeric_limits::max())) { *output = static_cast(*input); return 1; } return 0; } int32_t int64_div_wrapper(int64_t* dst, int64_t* src) { if (*src == 0) { return 0; } if (*src == -1 && *dst == std::numeric_limits::min()) { return -1; } *dst /= *src; return 1; } int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) { if (*src == 0) { return 0; } *dst %= *src; return 1; } int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) { if (*src == 0) { return 0; } *dst /= *src; return 1; } int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) { if (*src == 0) { return 0; } *dst %= *src; return 1; } uint32_t word32_ctz_wrapper(uint32_t* input) { return static_cast(base::bits::CountTrailingZeros32(*input)); } uint32_t word64_ctz_wrapper(uint64_t* input) { return static_cast(base::bits::CountTrailingZeros64(*input)); } uint32_t word32_popcnt_wrapper(uint32_t* input) { return static_cast(base::bits::CountPopulation(*input)); } uint32_t word64_popcnt_wrapper(uint64_t* input) { return static_cast(base::bits::CountPopulation(*input)); } void float64_pow_wrapper(double* param0, double* param1) { double x = ReadDoubleValue(param0); double y = ReadDoubleValue(param1); if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) { WriteDoubleValue(param0, std::numeric_limits::quiet_NaN()); } WriteDoubleValue(param0, Pow(x, y)); } } // namespace wasm } // namespace internal } // namespace v8