Sha256: 081a2013fedf2fd31397e735e68f612aeddae74524bc7dda119bb07b9b7ba4a0
Contents?: true
Size: 1.08 KB
Versions: 2
Compression:
Stored size: 1.08 KB
Contents
require "dnn" require "dnn/datasets/mnist" # If you use numo/linalg then please uncomment out. require "numo/linalg/autoloader" include DNN::Models include DNN::Layers include DNN::Optimizers include DNN::Losses x_train, y_train = DNN::MNIST.load_train x_test, y_test = DNN::MNIST.load_test x_train = x_train.reshape(x_train.shape[0], 784) x_test = x_test.reshape(x_test.shape[0], 784) x_train = Numo::SFloat.cast(x_train) / 255 x_test = Numo::SFloat.cast(x_test) / 255 y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat) y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat) class MLP < Model def initialize super @l1 = Dense.new(256) @l2 = Dense.new(256) @l3 = Dense.new(10) end def call(x) x = InputLayer.new(784).(x) x = @l1.(x) x = ReLU.(x) x = @l2.(x) x = ReLU.(x) x = @l3.(x) x end end model = MLP.new model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test]) accuracy, loss = model.evaluate(x_test, y_test) puts "accuracy: #{accuracy}" puts "loss: #{loss}"
Version data entries
2 entries across 2 versions & 1 rubygems
Version | Path |
---|---|
ruby-dnn-0.15.3 | examples/mnist_define_by_run.rb |
ruby-dnn-0.15.2 | examples/mnist_define_by_run.rb |