# Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/aiplatform/v1/model_deployment_monitoring_job.proto require 'google/protobuf' require 'google/api/field_behavior_pb' require 'google/api/resource_pb' require 'google/cloud/aiplatform/v1/encryption_spec_pb' require 'google/cloud/aiplatform/v1/feature_monitoring_stats_pb' require 'google/cloud/aiplatform/v1/io_pb' require 'google/cloud/aiplatform/v1/job_state_pb' require 'google/cloud/aiplatform/v1/model_monitoring_pb' require 'google/protobuf/duration_pb' require 'google/protobuf/struct_pb' require 'google/protobuf/timestamp_pb' require 'google/rpc/status_pb' Google::Protobuf::DescriptorPool.generated_pool.build do add_file("google/cloud/aiplatform/v1/model_deployment_monitoring_job.proto", :syntax => :proto3) do add_message "google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob" do optional :name, :string, 1 optional :display_name, :string, 2 optional :endpoint, :string, 3 optional :state, :enum, 4, "google.cloud.aiplatform.v1.JobState" optional :schedule_state, :enum, 5, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.MonitoringScheduleState" optional :latest_monitoring_pipeline_metadata, :message, 25, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata" repeated :model_deployment_monitoring_objective_configs, :message, 6, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveConfig" optional :model_deployment_monitoring_schedule_config, :message, 7, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringScheduleConfig" optional :logging_sampling_strategy, :message, 8, "google.cloud.aiplatform.v1.SamplingStrategy" optional :model_monitoring_alert_config, :message, 15, "google.cloud.aiplatform.v1.ModelMonitoringAlertConfig" optional :predict_instance_schema_uri, :string, 9 optional :sample_predict_instance, :message, 19, "google.protobuf.Value" optional :analysis_instance_schema_uri, :string, 16 repeated :bigquery_tables, :message, 10, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable" optional :log_ttl, :message, 17, "google.protobuf.Duration" map :labels, :string, :string, 11 optional :create_time, :message, 12, "google.protobuf.Timestamp" optional :update_time, :message, 13, "google.protobuf.Timestamp" optional :next_schedule_time, :message, 14, "google.protobuf.Timestamp" optional :stats_anomalies_base_directory, :message, 20, "google.cloud.aiplatform.v1.GcsDestination" optional :encryption_spec, :message, 21, "google.cloud.aiplatform.v1.EncryptionSpec" optional :enable_monitoring_pipeline_logs, :bool, 22 optional :error, :message, 23, "google.rpc.Status" end add_message "google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata" do optional :run_time, :message, 1, "google.protobuf.Timestamp" optional :status, :message, 2, "google.rpc.Status" end add_enum "google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.MonitoringScheduleState" do value :MONITORING_SCHEDULE_STATE_UNSPECIFIED, 0 value :PENDING, 1 value :OFFLINE, 2 value :RUNNING, 3 end add_message "google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable" do optional :log_source, :enum, 1, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable.LogSource" optional :log_type, :enum, 2, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable.LogType" optional :bigquery_table_path, :string, 3 end add_enum "google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable.LogSource" do value :LOG_SOURCE_UNSPECIFIED, 0 value :TRAINING, 1 value :SERVING, 2 end add_enum "google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable.LogType" do value :LOG_TYPE_UNSPECIFIED, 0 value :PREDICT, 1 value :EXPLAIN, 2 end add_message "google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveConfig" do optional :deployed_model_id, :string, 1 optional :objective_config, :message, 2, "google.cloud.aiplatform.v1.ModelMonitoringObjectiveConfig" end add_message "google.cloud.aiplatform.v1.ModelDeploymentMonitoringScheduleConfig" do optional :monitor_interval, :message, 1, "google.protobuf.Duration" optional :monitor_window, :message, 2, "google.protobuf.Duration" end add_message "google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies" do optional :objective, :enum, 1, "google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType" optional :deployed_model_id, :string, 2 optional :anomaly_count, :int32, 3 repeated :feature_stats, :message, 4, "google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies" end add_message "google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies" do optional :feature_display_name, :string, 1 optional :threshold, :message, 3, "google.cloud.aiplatform.v1.ThresholdConfig" optional :training_stats, :message, 4, "google.cloud.aiplatform.v1.FeatureStatsAnomaly" repeated :prediction_stats, :message, 5, "google.cloud.aiplatform.v1.FeatureStatsAnomaly" end add_enum "google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType" do value :MODEL_DEPLOYMENT_MONITORING_OBJECTIVE_TYPE_UNSPECIFIED, 0 value :RAW_FEATURE_SKEW, 1 value :RAW_FEATURE_DRIFT, 2 value :FEATURE_ATTRIBUTION_SKEW, 3 value :FEATURE_ATTRIBUTION_DRIFT, 4 end end end module Google module Cloud module AIPlatform module V1 ModelDeploymentMonitoringJob = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob").msgclass ModelDeploymentMonitoringJob::LatestMonitoringPipelineMetadata = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata").msgclass ModelDeploymentMonitoringJob::MonitoringScheduleState = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.MonitoringScheduleState").enummodule ModelDeploymentMonitoringBigQueryTable = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable").msgclass ModelDeploymentMonitoringBigQueryTable::LogSource = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable.LogSource").enummodule ModelDeploymentMonitoringBigQueryTable::LogType = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringBigQueryTable.LogType").enummodule ModelDeploymentMonitoringObjectiveConfig = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveConfig").msgclass ModelDeploymentMonitoringScheduleConfig = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringScheduleConfig").msgclass ModelMonitoringStatsAnomalies = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies").msgclass ModelMonitoringStatsAnomalies::FeatureHistoricStatsAnomalies = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies").msgclass ModelDeploymentMonitoringObjectiveType = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType").enummodule end end end end