# fluent-plugin-bigquery
[Fluentd](http://fluentd.org) output plugin to load/insert data into Google BigQuery.
* insert data over streaming inserts
* for continuous real-time insertions
* https://developers.google.com/bigquery/streaming-data-into-bigquery#usecases
* (NOT IMPLEMENTED) load data
* for data loading as batch jobs, for big amount of data
* https://developers.google.com/bigquery/loading-data-into-bigquery
Current version of this plugin supports Google API with Service Account Authentication, but does not support
OAuth flow for installed applications.
## Configuration
### Streming inserts
Configure insert specifications with target table schema, with your credentials. This is minimum configurations:
```apache
type bigquery
method insert # default
auth_method private_key # default
email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
# private_key_passphrase notasecret # default
project yourproject_id
dataset yourdataset_id
table tablename
time_format %s
time_field time
field_integer time,status,bytes
field_string rhost,vhost,path,method,protocol,agent,referer
field_float requestime
field_boolean bot_access,loginsession
```
For high rate inserts over streaming inserts, you should specify flush intervals and buffer chunk options:
```apache
type bigquery
method insert # default
flush_interval 1 # flush as frequent as possible
buffer_chunk_records_limit 300 # default rate limit for users is 100
buffer_queue_limit 10240 # 1MB * 10240 -> 10GB!
num_threads 16
auth_method private_key # default
email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
# private_key_passphrase notasecret # default
project yourproject_id
dataset yourdataset_id
tables accesslog1,accesslog2,accesslog3
time_format %s
time_field time
field_integer time,status,bytes
field_string rhost,vhost,path,method,protocol,agent,referer
field_float requestime
field_boolean bot_access,loginsession
```
Important options for high rate events are:
* `tables`
* 2 or more tables are available with ',' separator
* `out_bigquery` uses these tables for Table Sharding inserts
* these must have same schema
* `buffer_chunk_records_limit`
* number of records over streaming inserts API call is limited as 100, per second, per table
* default average rate limit is 100, and spike rate limit is 1000
* `out_bigquery` flushes buffer with 100 records for 1 inserts API call
* `buffer_queue_limit`
* BigQuery streaming inserts needs very small buffer chunks
* for high-rate events, `buffer_queue_limit` should be configured with big number
* Max 1GB memory may be used under network problem in default configuration
* `buffer_chunk_limit (default 1MB)` x `buffer_queue_limit (default 1024)`
* `num_threads`
* threads for insert api calls in parallel
* specify this option for 100 or more records per seconds
* 10 or more threads seems good for inserts over internet
* less threads may be good for Google Compute Engine instances (with low latency for BigQuery)
* `flush_interval`
* `1` is lowest value, without patches on Fluentd v0.10.41 or earlier
* see `patches` below
### Authentication
There are two methods supported to fetch access token for the service account.
1. Public-Private key pair
2. Predefined access token (Compute Engine only)
The examples above use the first one. You first need to create a service account (client ID),
download its private key and deploy the key with fluentd.
On the other hand, you don't need to explicitly create a service account for fluentd when you
run fluentd in Google Compute Engine. In this second authentication method, you need to
add the API scope "https://www.googleapis.com/auth/bigquery" to the scope list of your
Compute Engine instance, then you can configure fluentd like this.
```apache
type bigquery
auth_method compute_engine
project yourproject_id
dataset yourdataset_id
table tablename
time_format %s
time_field time
field_integer time,status,bytes
field_string rhost,vhost,path,method,protocol,agent,referer
field_float requestime
field_boolean bot_access,loginsession
```
### Table schema
There are two methods to describe the schema of the target table.
1. List fields in fluent.conf
2. Load a schema file in JSON.
The examples above use the first method. In this method,
you can also specify nested fields by prefixing their belonging record fields.
```apache
type bigquery
...
time_format %s
time_field time
field_integer time,response.status,response.bytes
field_string request.vhost,request.path,request.method,request.protocol,request.agent,request.referer,remote.host,remote.ip,remote.user
field_float request.time
field_boolean request.bot_access,request.loginsession
```
This schema accepts structured JSON data like:
```json
{
"request":{
"time":1391748126.7000976,
"vhost":"www.example.com",
"path":"/",
"method":"GET",
"protocol":"HTTP/1.1",
"agent":"HotJava",
"bot_access":false
},
"remote":{ "ip": "192.0.2.1" },
"response":{
"status":200,
"bytes":1024
}
}
```
The second method is to specify a path to a BigQuery schema file instead of listing fields. In this case, your fluent.conf looks like:
```apache
type bigquery
...
time_format %s
time_field time
schema_path /path/to/httpd.schema
field_integer time
```
where /path/to/httpd.schema is a path to the JSON-encoded schema file which you used for creating the table on BigQuery.
NOTE: Since JSON does not define how to encode data of TIMESTAMP type,
you are still recommended to specify JSON types for TIMESTAMP fields as "time" field does in the example.
## TODO
* support Load API
* with automatically configured flush/buffer options
* support optional data fields
* support NULLABLE/REQUIRED/REPEATED field options in field list style of configuration
* OAuth installed application credentials support
* Google API discovery expiration
* Error classes
* check row size limits