// Copyright 2008 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview Defines a 3-element vector class that can be used for * coordinate math, useful for animation systems and point manipulation. * * Based heavily on code originally by: */ goog.provide('goog.math.Vec3'); goog.require('goog.math'); goog.require('goog.math.Coordinate3'); /** * Class for a three-dimensional vector object and assorted functions useful for * manipulation. * * Inherits from goog.math.Coordinate3 so that a Vec3 may be passed in to any * function that requires a Coordinate. * * @param {number} x The x value for the vector. * @param {number} y The y value for the vector. * @param {number} z The z value for the vector. * @constructor * @extends {goog.math.Coordinate3} */ goog.math.Vec3 = function(x, y, z) { /** * X-value * @type {number} */ this.x = x; /** * Y-value * @type {number} */ this.y = y; /** * Z-value * @type {number} */ this.z = z; }; goog.inherits(goog.math.Vec3, goog.math.Coordinate3); /** * Generates a random unit vector. * * http://mathworld.wolfram.com/SpherePointPicking.html * Using (6), (7), and (8) to generate coordinates. * @return {!goog.math.Vec3} A random unit-length vector. */ goog.math.Vec3.randomUnit = function() { var theta = Math.random() * Math.PI * 2; var phi = Math.random() * Math.PI * 2; var z = Math.cos(phi); var x = Math.sqrt(1 - z * z) * Math.cos(theta); var y = Math.sqrt(1 - z * z) * Math.sin(theta); return new goog.math.Vec3(x, y, z); }; /** * Generates a random vector inside the unit sphere. * * @return {!goog.math.Vec3} A random vector. */ goog.math.Vec3.random = function() { return goog.math.Vec3.randomUnit().scale(Math.random()); }; /** * Returns a new Vec3 object from a given coordinate. * * @param {goog.math.Coordinate3} a The coordinate. * @return {!goog.math.Vec3} A new vector object. */ goog.math.Vec3.fromCoordinate3 = function(a) { return new goog.math.Vec3(a.x, a.y, a.z); }; /** * Creates a new copy of this Vec3. * * @return {!goog.math.Vec3} A new vector with the same coordinates as this one. * @override */ goog.math.Vec3.prototype.clone = function() { return new goog.math.Vec3(this.x, this.y, this.z); }; /** * Returns the magnitude of the vector measured from the origin. * * @return {number} The length of the vector. */ goog.math.Vec3.prototype.magnitude = function() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); }; /** * Returns the squared magnitude of the vector measured from the origin. * NOTE(brenneman): Leaving out the square root is not a significant * optimization in JavaScript. * * @return {number} The length of the vector, squared. */ goog.math.Vec3.prototype.squaredMagnitude = function() { return this.x * this.x + this.y * this.y + this.z * this.z; }; /** * Scales the current vector by a constant. * * @param {number} s The scale factor. * @return {!goog.math.Vec3} This vector, scaled. */ goog.math.Vec3.prototype.scale = function(s) { this.x *= s; this.y *= s; this.z *= s; return this; }; /** * Reverses the sign of the vector. Equivalent to scaling the vector by -1. * * @return {!goog.math.Vec3} This vector, inverted. */ goog.math.Vec3.prototype.invert = function() { this.x = -this.x; this.y = -this.y; this.z = -this.z; return this; }; /** * Normalizes the current vector to have a magnitude of 1. * * @return {!goog.math.Vec3} This vector, normalized. */ goog.math.Vec3.prototype.normalize = function() { return this.scale(1 / this.magnitude()); }; /** * Adds another vector to this vector in-place. * * @param {goog.math.Vec3} b The vector to add. * @return {!goog.math.Vec3} This vector with {@code b} added. */ goog.math.Vec3.prototype.add = function(b) { this.x += b.x; this.y += b.y; this.z += b.z; return this; }; /** * Subtracts another vector from this vector in-place. * * @param {goog.math.Vec3} b The vector to subtract. * @return {!goog.math.Vec3} This vector with {@code b} subtracted. */ goog.math.Vec3.prototype.subtract = function(b) { this.x -= b.x; this.y -= b.y; this.z -= b.z; return this; }; /** * Compares this vector with another for equality. * * @param {goog.math.Vec3} b The other vector. * @return {boolean} True if this vector's x, y and z equal the given vector's * x, y, and z, respectively. */ goog.math.Vec3.prototype.equals = function(b) { return this == b || !!b && this.x == b.x && this.y == b.y && this.z == b.z; }; /** * Returns the distance between two vectors. * * @param {goog.math.Vec3} a The first vector. * @param {goog.math.Vec3} b The second vector. * @return {number} The distance. */ goog.math.Vec3.distance = goog.math.Coordinate3.distance; /** * Returns the squared distance between two vectors. * * @param {goog.math.Vec3} a The first vector. * @param {goog.math.Vec3} b The second vector. * @return {number} The squared distance. */ goog.math.Vec3.squaredDistance = goog.math.Coordinate3.squaredDistance; /** * Compares vectors for equality. * * @param {goog.math.Vec3} a The first vector. * @param {goog.math.Vec3} b The second vector. * @return {boolean} True if the vectors have equal x, y, and z coordinates. */ goog.math.Vec3.equals = goog.math.Coordinate3.equals; /** * Returns the sum of two vectors as a new Vec3. * * @param {goog.math.Vec3} a The first vector. * @param {goog.math.Vec3} b The second vector. * @return {!goog.math.Vec3} The sum vector. */ goog.math.Vec3.sum = function(a, b) { return new goog.math.Vec3(a.x + b.x, a.y + b.y, a.z + b.z); }; /** * Returns the difference of two vectors as a new Vec3. * * @param {goog.math.Vec3} a The first vector. * @param {goog.math.Vec3} b The second vector. * @return {!goog.math.Vec3} The difference vector. */ goog.math.Vec3.difference = function(a, b) { return new goog.math.Vec3(a.x - b.x, a.y - b.y, a.z - b.z); }; /** * Returns the dot-product of two vectors. * * @param {goog.math.Vec3} a The first vector. * @param {goog.math.Vec3} b The second vector. * @return {number} The dot-product of the two vectors. */ goog.math.Vec3.dot = function(a, b) { return a.x * b.x + a.y * b.y + a.z * b.z; }; /** * Returns the cross-product of two vectors. * * @param {goog.math.Vec3} a The first vector. * @param {goog.math.Vec3} b The second vector. * @return {!goog.math.Vec3} The cross-product of the two vectors. */ goog.math.Vec3.cross = function(a, b) { return new goog.math.Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); }; /** * Returns a new Vec3 that is the linear interpolant between vectors a and b at * scale-value x. * * @param {goog.math.Vec3} a Vector a. * @param {goog.math.Vec3} b Vector b. * @param {number} x The proportion between a and b. * @return {!goog.math.Vec3} The interpolated vector. */ goog.math.Vec3.lerp = function(a, b, x) { return new goog.math.Vec3(goog.math.lerp(a.x, b.x, x), goog.math.lerp(a.y, b.y, x), goog.math.lerp(a.z, b.z, x)); };