module NewRelic module Stats # a stat is absent if its call count equals zero def absent? call_count == 0 end # outputs a useful human-readable time given a value in milliseconds def time_str(value_ms) case when value_ms >= 10000 "%.1f s" % (value_ms / 1000.0) when value_ms >= 5000 "%.2f s" % (value_ms / 1000.0) else "%.0f ms" % value_ms end end # makes sure we aren't dividing by zero def checked_calculation(numerator, denominator) if denominator.nil? || denominator == 0 0.0 else numerator.to_f / denominator end end def average_call_time checked_calculation(total_call_time, call_count) end def average_exclusive_time checked_calculation(total_exclusive_time, call_count) end # merge by adding to average response time # - used to compose multiple metrics e.g. dispatcher time + mongrel queue time def sum_merge! (other_stats) Array(other_stats).each do |other| self.sum_attributes(other) end self end def sum_attributes(other) update_totals(other) stack_min_max_from(other) update_boundaries(other) end def stack_min_max_from(other) self.min_call_time += other.min_call_time self.max_call_time += other.max_call_time end def update_boundaries(other) self.begin_time = other.begin_time if should_replace_begin_time?(other) self.end_time = other.end_time if should_replace_end_time?(other) end def should_replace_end_time?(other) end_time.to_f < other.end_time.to_f end def should_replace_begin_time?(other) other.begin_time.to_f < begin_time.to_f || begin_time.to_f == 0.0 end def update_totals(other) self.total_call_time += other.total_call_time self.total_exclusive_time += other.total_exclusive_time self.sum_of_squares += other.sum_of_squares end def min_time_less?(other) (other.min_call_time < min_call_time && other.call_count > 0) || call_count == 0 end def expand_min_max_to(other) self.min_call_time = other.min_call_time if min_time_less?(other) self.max_call_time = other.max_call_time if other.max_call_time > max_call_time end def merge_attributes(other) update_totals(other) expand_min_max_to(other) self.call_count += other.call_count update_boundaries(other) end def merge!(other_stats) Array(other_stats).each do |other| merge_attributes(other) end self end def merge(other_stats) stats = self.clone stats.merge!(other_stats) end # split into an array of timeslices whose # time boundaries start on (begin_time + (n * duration)) and whose # end time ends on (begin_time * (n + 1) * duration), except for the # first and last elements, whose begin time and end time are the begin # and end times of this stats instance, respectively. Yield to caller # for the code that creates the actual stats instance def split(rollup_begin_time, rollup_period) rollup_begin_time = rollup_begin_time.to_f rollup_begin_time += ((self.begin_time - rollup_begin_time) / rollup_period).floor * rollup_period current_begin_time = self.begin_time current_end_time = rollup_begin_time + rollup_period return [self] if current_end_time >= self.end_time timeslices = [] while current_end_time < self.end_time do ts = yield(current_begin_time, current_end_time) if ts ts.fraction_of(self) timeslices << ts end current_begin_time = current_end_time current_end_time = current_begin_time + rollup_period end if self.end_time > current_begin_time percentage = rollup_period / self.duration + (self.begin_time - rollup_begin_time) / rollup_period ts = yield(current_begin_time, self.end_time) if ts ts.fraction_of(self) timeslices << ts end end timeslices end def is_reset? call_count == 0 && total_call_time == 0.0 && total_exclusive_time == 0.0 end def reset self.call_count = 0 self.total_call_time = 0.0 self.total_exclusive_time = 0.0 self.min_call_time = 0.0 self.max_call_time = 0.0 self.sum_of_squares = 0.0 self.begin_time = Time.at(0) self.end_time = Time.at(0) end def as_percentage_of(other_stats) checked_calculation(total_call_time, other_stats.total_call_time) * 100.0 end # the stat total_call_time is a percent def as_percentage average_call_time * 100.0 end def duration end_time ? (end_time - begin_time) : 0.0 end def midpoint begin_time + (duration/2) end def calls_per_minute checked_calculation(call_count, duration) * 60 end def total_call_time_per_minute 60.0 * time_percentage end def standard_deviation return 0 if call_count < 2 || self.sum_of_squares.nil? # Convert sum of squares into standard deviation based on # formula for the standard deviation for the entire population x = self.sum_of_squares - (self.call_count * (self.average_value**2)) return 0 if x <= 0 Math.sqrt(x / self.call_count) end # returns the time spent in this component as a percentage of the total # time window. def time_percentage checked_calculation(total_call_time, duration) end def exclusive_time_percentage checked_calculation(total_exclusive_time, duration) end alias average_value average_call_time alias average_response_time average_call_time alias requests_per_minute calls_per_minute def to_s summary end # Summary string to facilitate testing def summary format = "%m/%d/%y %I:%M%p" "[#{Time.at(begin_time.to_f).utc.strftime(format)} UTC, #{'%2.3fs' % duration.to_f}; #{'%2i' % call_count.to_i} calls #{'%4i' % average_call_time.to_f}s]" end # calculate this set of stats to be a percentage fraction # of the provided stats, which has an overlapping time window. # used as a key part of the split algorithm def fraction_of(s) min_end = (end_time < s.end_time ? end_time : s.end_time) max_begin = (begin_time > s.begin_time ? begin_time : s.begin_time) percentage = (min_end - max_begin) / s.duration self.total_exclusive_time = s.total_exclusive_time * percentage self.total_call_time = s.total_call_time * percentage self.min_call_time = s.min_call_time self.max_call_time = s.max_call_time self.call_count = s.call_count * percentage self.sum_of_squares = (s.sum_of_squares || 0) * percentage end # multiply the total time and rate by the given percentage def multiply_by(percentage) self.total_call_time = total_call_time * percentage self.call_count = call_count * percentage self.sum_of_squares = sum_of_squares * percentage self end # returns s,t,f def get_apdex [@call_count, @total_call_time.to_i, @total_exclusive_time.to_i] end def apdex_score s, t, f = get_apdex (s.to_f + (t.to_f / 2)) / (s+t+f).to_f end end class StatsBase include Stats attr_accessor :call_count attr_accessor :min_call_time attr_accessor :max_call_time attr_accessor :total_call_time attr_accessor :total_exclusive_time attr_accessor :sum_of_squares def initialize reset end def freeze @end_time = Time.now super end def to_json(*a) {'call_count' => call_count, 'min_call_time' => min_call_time, 'max_call_time' => max_call_time, 'total_call_time' => total_call_time, 'total_exclusive_time' => total_exclusive_time, 'sum_of_squares' => sum_of_squares}.to_json(*a) end # In this class, we explicitly don't track begin and end time here, to save space during # cross process serialization via xml. Still the accessor methods must be provided for merge to work. def begin_time=(t) end def end_time=(t) end def begin_time 0.0 end def end_time 0.0 end end class BasicStats < StatsBase end class ApdexStats < StatsBase def record_apdex_s @call_count += 1 end def record_apdex_t @total_call_time += 1 end def record_apdex_f @total_exclusive_time += 1 end end # Statistics used to track the performance of traced methods class MethodTraceStats < StatsBase alias data_point_count call_count # record a single data point into the statistical gatherer. The gatherer # will aggregate all data points collected over a specified period and upload # its data to the NewRelic server def record_data_point(value, exclusive_time = value) @call_count += 1 @total_call_time += value @min_call_time = value if value < @min_call_time || @call_count == 1 @max_call_time = value if value > @max_call_time @total_exclusive_time += exclusive_time @sum_of_squares += (value * value) self end alias trace_call record_data_point # Records multiple data points as one method call - this handles # all the aggregation that would be done with multiple # record_data_point calls def record_multiple_data_points(total_value, count=1) return record_data_point(total_value) if count == 1 @call_count += count @total_call_time += total_value avg_val = total_value / count @min_call_time = avg_val if avg_val < @min_call_time || @call_count == count @max_call_time = avg_val if avg_val > @max_call_time @total_exclusive_time += total_value @sum_of_squares += (avg_val * avg_val) * count self end # increments the call_count by one def increment_count(value = 1) @call_count += value end # outputs a human-readable version of the MethodTraceStats object def inspect "#" end end class ScopedMethodTraceStats < MethodTraceStats attr_accessor :unscoped_stats def initialize(unscoped_stats) super() self.unscoped_stats = unscoped_stats end def trace_call(call_time, exclusive_time = call_time) unscoped_stats.trace_call call_time, exclusive_time super call_time, exclusive_time end # Records multiple data points as one method call - this handles # all the aggregation that would be done with multiple # trace_call calls def record_multiple_data_points(total_value, count=1) unscoped_stats.record_multiple_data_points(total_value, count) super total_value, count end end end