Sha256: 057bd3fbc71047caf654e53bec5a765b99fafbbde90ae4f516695a6ccc1586e7

Contents?: true

Size: 1.09 KB

Versions: 8

Compression:

Stored size: 1.09 KB

Contents

require "dnn"
require "dnn/lib/mnist"
#require "numo/linalg/autoloader"

include Numo
include DNN::Layers
include DNN::Activations
include DNN::Optimizers
Model = DNN::Model
MNIST = DNN::MNIST

x_train, y_train = MNIST.load_train
x_test, y_test = MNIST.load_test

x_train = SFloat.cast(x_train).reshape(x_train.shape[0], 1, 28, 28)
x_test = SFloat.cast(x_test).reshape(x_test.shape[0], 1, 28, 28)

x_train /= 255
x_test /= 255

y_train = DNN::Util.to_categorical(y_train, 10)
y_test = DNN::Util.to_categorical(y_test, 10)

model = Model.new

model << InputLayer.new([1, 28, 28])

model << Conv2D.new(16, 5, 5)
model << BatchNormalization.new
model << ReLU.new

model << MaxPool2D.new(2, 2)

model << Conv2D.new(32, 5, 5)
model << BatchNormalization.new
model << ReLU.new

model << Flatten.new

model << Dense.new(256)
model << BatchNormalization.new
model << ReLU.new
model << Dropout.new(0.5)

model << Dense.new(10)
model << SoftmaxWithLoss.new

model.compile(Adam.new)

model.train(x_train, y_train, 10, batch_size: 100) do
  model.test(x_test, y_test)
end

Version data entries

8 entries across 8 versions & 1 rubygems

Version Path
ruby-dnn-0.1.8 examples/mnist_example2.rb
ruby-dnn-0.1.7 examples/mnist_example2.rb
ruby-dnn-0.1.6 examples/mnist_example2.rb
ruby-dnn-0.1.5 examples/mnist_example2.rb
ruby-dnn-0.1.4 examples/mnist_example2.rb
ruby-dnn-0.1.3 examples/mnist_example2.rb
ruby-dnn-0.1.2 examples/mnist_example2.rb
ruby-dnn-0.1.1 examples/mnist_example2.rb