class FuzzyMatch class Score class PureRuby < Score SPACE = ' ' # http://stackoverflow.com/questions/653157/a-better-similarity-ranking-algorithm-for-variable-length-strings def dices_coefficient_similar @dices_coefficient_similar ||= begin if str1 == str2 1.0 elsif str1.length == 1 and str2.length == 1 0.0 else pairs1 = (0..str1.length-2).map do |i| str1[i,2] end.reject do |pair| pair.include? SPACE end pairs2 = (0..str2.length-2).map do |i| str2[i,2] end.reject do |pair| pair.include? SPACE end union = pairs1.size + pairs2.size intersection = 0 pairs1.each do |p1| 0.upto(pairs2.size-1) do |i| if p1 == pairs2[i] intersection += 1 pairs2.slice!(i) break end end end (2.0 * intersection) / union end end end # extracted/adapted from the text gem version 1.0.2 # normalization added for utf-8 strings # lib/text/levenshtein.rb def levenshtein_similar @levenshtein_similar ||= begin if utf8? unpack_rule = 'U*' else unpack_rule = 'C*' end s = str1.unpack(unpack_rule) t = str2.unpack(unpack_rule) n = s.length m = t.length if n == 0 or m == 0 0.0 else d = (0..m).to_a x = nil (0...n).each do |i| e = i+1 (0...m).each do |j| cost = (s[i] == t[j]) ? 0 : 1 x = [ d[j+1] + 1, # insertion e + 1, # deletion d[j] + cost # substitution ].min d[j] = e e = x end d[m] = x end # normalization logic from https://github.com/flori/amatch/blob/master/ext/amatch_ext.c#L301 # if (b_len > a_len) { # result = rb_float_new(1.0 - ((double) v[p][b_len]) / b_len); # } else { # result = rb_float_new(1.0 - ((double) v[p][b_len]) / a_len); # } 1.0 - x.to_f / [n, m].max end end end private def utf8? return @utf8_query if defined?(@utf8_query) @utf8_query = (defined?(::Encoding) ? str1.encoding.to_s : $KCODE).downcase.start_with?('u') end end end end