module Statsample module MLE # Logit MLE estimation. # Usage: # # mle=Statsample::MLE::Logit.new # mle.newton_raphson(x,y) # beta=mle.parameters # likehood=mle.likehood(x,y,beta) # iterations=mle.iterations # class Logit < BaseMLE # F(B'Xi) def f(b,xi) p_bx=(xi*b)[0,0] res=(1.0/(1.0+Math::exp(-p_bx))) if res==0.0 res=1e-15 elsif res==1.0 res=0.999999999999999 end res end # Likehood for x_i vector, y_i scalar and b parameters def likehood_i(xi,yi,b) (f(b,xi)**yi)*((1-f(b,xi))**(1-yi)) end # Log Likehood for x_i vector, y_i scalar and b parameters def log_likehood_i(xi,yi,b) fbx=f(b,xi) (yi.to_f*Math::log(fbx))+((1.0-yi.to_f)*Math::log(1.0-fbx)) end # First derivative of log-likehood function # x: Matrix (NxM) # y: Matrix (Nx1) # p: Matrix (Mx1) def first_derivative(x,y,p) raise "x.rows!=y.rows" if x.row_size!=y.row_size raise "x.columns!=p.rows" if x.column_size!=p.row_size n = x.row_size k = x.column_size fd = Array.new(k) k.times {|i| fd[i] = [0.0]} n.times do |i| row = x.row(i).to_a value1 = (1-y[i,0]) -p_plus(row,p) k.times do |j| fd[j][0] -= value1*row[j] end end Matrix.rows(fd, true) end # Second derivative of log-likehood function # x: Matrix (NxM) # y: Matrix (Nx1) # p: Matrix (Mx1) def second_derivative(x,y,p) raise "x.rows!=y.rows" if x.row_size!=y.row_size raise "x.columns!=p.rows" if x.column_size!=p.row_size n = x.row_size k = x.column_size sd = Array.new(k) k.times do |i| arr = Array.new(k) k.times{ |j| arr[j]=0.0} sd[i] = arr end n.times do |i| row = x.row(i).to_a p_m = p_minus(row,p) k.times do |j| k.times do |l| sd[j][l] -= p_m *(1-p_m)*row[j]*row[l] end end end Matrix.rows(sd, true) end private def p_minus(x_row,p) value = 0.0; x_row.each_index { |i| value += x_row[i]*p[i,0]} 1/(1+Math.exp(-value)) end def p_plus(x_row,p) value = 0.0; x_row.each_index { |i| value += x_row[i]*p[i,0]} 1/(1+Math.exp(value)) end end # Logit end # MLE end # Statsample