module Plexus class Network include DigraphBuilder attr_accessor :lower, :upper, :cost, :flow def residual(residual_capacity, cost_property, zero = 0) r = Digraph.new edges.each do |e1| [e1,e1.reverse].each do |e| rij = property(e,self.upper) - property(e,self.flow) if edge? e rij += property(e.reverse,self.flow) - property(e.reverse,self.lower) if edge? e.reverse r.add_edge!(e) if rij > zero r.property_set(e,residual_capacity, rij) r.property_set(e,cost, cost(e,cost_property)) end end r end def maximum_flow() eliminate_lower_bounds.maximum_flow_prime.restore_lower_bounds(self); end private def eliminate_lower_bounds no_lower_bounds = Digraph.new(self) if self.upper.kind_of? Proc then no_lower_bounds.upper = Proc.new {|e| self.upper.call(e) - property(e,self.lower) } else no_lower_bounds.edges.each {|e| no_lower_bounds[e][self.upper] -= property(e,self.lower)} end no_lower_bounds end def restore_lower_bounds(src) src.edges.each do |e| (src.flow ? src[e][src.flow] : src[e]) = property(e, self.flow) + src.property(e, self.lower) end src end def maximum_flow_prime end end # Network module GraphBuilder module MaximumFlow # Maximum flow, it returns an array with the maximum flow and a hash of flow per edge # Currently a highly inefficient implementation, FIXME, This should use Goldberg and Tarjan's method. def maximum_flow(s, t, capacity = nil, zero = 0) flow = Hash.new(zero) available = Hash.new(zero) total = zero edges.each {|e| available[e] = cost(e,capacity)} adj_positive = Proc.new do |u| adjacent(u).select {|r| available[edge_class[u,r]] > zero} end while (tree = bfs_tree_from_vertex(start))[t] route = [t] while route[-1] != s route << tree[route[route[-1]]] raise ArgumentError, "No route from #{s} to #{t} possible" end; route.reverse amt = route.map {|e| available[e]}.min route.each do |e| flow[e] += amt available[e] -= amt end total += amt end [total, flow] end end # MaximumFlow end # GraphBuilder end # Plexus