/* ---------------------------------------------------------------------------- * This file was automatically generated by SWIG (http://www.swig.org). * Version 1.3.27 * * This file is not intended to be easily readable and contains a number of * coding conventions designed to improve portability and efficiency. Do not make * changes to this file unless you know what you are doing--modify the SWIG * interface file instead. * ----------------------------------------------------------------------------- */ /*********************************************************************** * * This section contains generic SWIG labels for method/variable * declarations/attributes, and other compiler dependent labels. * ************************************************************************/ /* template workaround for compilers that cannot correctly implement the C++ standard */ #ifndef SWIGTEMPLATEDISAMBIGUATOR # if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x560) # define SWIGTEMPLATEDISAMBIGUATOR template # else # define SWIGTEMPLATEDISAMBIGUATOR # endif #endif /* inline attribute */ #ifndef SWIGINLINE # if defined(__cplusplus) || (defined(__GNUC__) && !defined(__STRICT_ANSI__)) # define SWIGINLINE inline # else # define SWIGINLINE # endif #endif /* attribute recognised by some compilers to avoid 'unused' warnings */ #ifndef SWIGUNUSED # if defined(__GNUC__) || defined(__ICC) # define SWIGUNUSED __attribute__ ((unused)) # else # define SWIGUNUSED # endif #endif /* internal SWIG method */ #ifndef SWIGINTERN # define SWIGINTERN static SWIGUNUSED #endif /* internal inline SWIG method */ #ifndef SWIGINTERNINLINE # define SWIGINTERNINLINE SWIGINTERN SWIGINLINE #endif /* exporting methods for Windows DLLs */ #ifndef SWIGEXPORT # if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__) # if defined(STATIC_LINKED) # define SWIGEXPORT # else # define SWIGEXPORT __declspec(dllexport) # endif # else # define SWIGEXPORT # endif #endif /* calling conventions for Windows */ #ifndef SWIGSTDCALL # if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__) # define SWIGSTDCALL __stdcall # else # define SWIGSTDCALL # endif #endif /* ruby.swg */ /* Implementation : RUBY */ #define SWIGRUBY 1 #include "ruby.h" /* Flags for pointer conversion */ #define SWIG_POINTER_EXCEPTION 0x1 #define SWIG_POINTER_OWN 0x1 #define SWIG_POINTER_DISOWN 0x2 #define SWIG_TRACK_OBJECTS 0x4 #define NUM2USHRT(n) (\ (0 <= NUM2UINT(n) && NUM2UINT(n) <= USHRT_MAX)\ ? (unsigned short) NUM2UINT(n) \ : (rb_raise(rb_eArgError, "integer %d out of range of `unsigned short'",\ NUM2UINT(n)), (short)0)\ ) #define NUM2SHRT(n) (\ (SHRT_MIN <= NUM2INT(n) && NUM2INT(n) <= SHRT_MAX)\ ? (short)NUM2INT(n)\ : (rb_raise(rb_eArgError, "integer %d out of range of `short'",\ NUM2INT(n)), (short)0)\ ) /* Ruby 1.7 defines NUM2LL(), LL2NUM() and ULL2NUM() macros */ #ifndef NUM2LL #define NUM2LL(x) NUM2LONG((x)) #endif #ifndef LL2NUM #define LL2NUM(x) INT2NUM((long) (x)) #endif #ifndef ULL2NUM #define ULL2NUM(x) UINT2NUM((unsigned long) (x)) #endif /* Ruby 1.7 doesn't (yet) define NUM2ULL() */ #ifndef NUM2ULL #ifdef HAVE_LONG_LONG #define NUM2ULL(x) rb_num2ull((x)) #else #define NUM2ULL(x) NUM2ULONG(x) #endif #endif /* * Need to be very careful about how these macros are defined, especially * when compiling C++ code or C code with an ANSI C compiler. * * VALUEFUNC(f) is a macro used to typecast a C function that implements * a Ruby method so that it can be passed as an argument to API functions * like rb_define_method() and rb_define_singleton_method(). * * VOIDFUNC(f) is a macro used to typecast a C function that implements * either the "mark" or "free" stuff for a Ruby Data object, so that it * can be passed as an argument to API functions like Data_Wrap_Struct() * and Data_Make_Struct(). */ #ifdef __cplusplus # ifndef RUBY_METHOD_FUNC /* These definitions should work for Ruby 1.4.6 */ # define PROTECTFUNC(f) ((VALUE (*)()) f) # define VALUEFUNC(f) ((VALUE (*)()) f) # define VOIDFUNC(f) ((void (*)()) f) # else # ifndef ANYARGS /* These definitions should work for Ruby 1.6 */ # define PROTECTFUNC(f) ((VALUE (*)()) f) # define VALUEFUNC(f) ((VALUE (*)()) f) # define VOIDFUNC(f) ((RUBY_DATA_FUNC) f) # else /* These definitions should work for Ruby 1.7+ */ # define PROTECTFUNC(f) ((VALUE (*)(VALUE)) f) # define VALUEFUNC(f) ((VALUE (*)(ANYARGS)) f) # define VOIDFUNC(f) ((RUBY_DATA_FUNC) f) # endif # endif #else # define VALUEFUNC(f) (f) # define VOIDFUNC(f) (f) #endif typedef struct { VALUE klass; VALUE mImpl; void (*mark)(void *); void (*destroy)(void *); } swig_class; /* Don't use for expressions have side effect */ #ifndef RB_STRING_VALUE #define RB_STRING_VALUE(s) (TYPE(s) == T_STRING ? (s) : (*(volatile VALUE *)&(s) = rb_str_to_str(s))) #endif #ifndef StringValue #define StringValue(s) RB_STRING_VALUE(s) #endif #ifndef StringValuePtr #define StringValuePtr(s) RSTRING(RB_STRING_VALUE(s))->ptr #endif #ifndef StringValueLen #define StringValueLen(s) RSTRING(RB_STRING_VALUE(s))->len #endif #ifndef SafeStringValue #define SafeStringValue(v) do {\ StringValue(v);\ rb_check_safe_str(v);\ } while (0) #endif #ifndef HAVE_RB_DEFINE_ALLOC_FUNC #define rb_define_alloc_func(klass, func) rb_define_singleton_method((klass), "new", VALUEFUNC((func)), -1) #define rb_undef_alloc_func(klass) rb_undef_method(CLASS_OF((klass)), "new") #endif /* Contract support */ #define SWIG_contract_assert(expr, msg) if (!(expr)) { rb_raise(rb_eRuntimeError, (char *) msg ); } else /*********************************************************************** * swigrun.swg * * This file contains generic CAPI SWIG runtime support for pointer * type checking. * ************************************************************************/ /* This should only be incremented when either the layout of swig_type_info changes, or for whatever reason, the runtime changes incompatibly */ #define SWIG_RUNTIME_VERSION "2" /* define SWIG_TYPE_TABLE_NAME as "SWIG_TYPE_TABLE" */ #ifdef SWIG_TYPE_TABLE # define SWIG_QUOTE_STRING(x) #x # define SWIG_EXPAND_AND_QUOTE_STRING(x) SWIG_QUOTE_STRING(x) # define SWIG_TYPE_TABLE_NAME SWIG_EXPAND_AND_QUOTE_STRING(SWIG_TYPE_TABLE) #else # define SWIG_TYPE_TABLE_NAME #endif /* You can use the SWIGRUNTIME and SWIGRUNTIMEINLINE macros for creating a static or dynamic library from the swig runtime code. In 99.9% of the cases, swig just needs to declare them as 'static'. But only do this if is strictly necessary, ie, if you have problems with your compiler or so. */ #ifndef SWIGRUNTIME # define SWIGRUNTIME SWIGINTERN #endif #ifndef SWIGRUNTIMEINLINE # define SWIGRUNTIMEINLINE SWIGRUNTIME SWIGINLINE #endif #include #ifdef __cplusplus extern "C" { #endif typedef void *(*swig_converter_func)(void *); typedef struct swig_type_info *(*swig_dycast_func)(void **); /* Structure to store inforomation on one type */ typedef struct swig_type_info { const char *name; /* mangled name of this type */ const char *str; /* human readable name of this type */ swig_dycast_func dcast; /* dynamic cast function down a hierarchy */ struct swig_cast_info *cast; /* linked list of types that can cast into this type */ void *clientdata; /* language specific type data */ } swig_type_info; /* Structure to store a type and conversion function used for casting */ typedef struct swig_cast_info { swig_type_info *type; /* pointer to type that is equivalent to this type */ swig_converter_func converter; /* function to cast the void pointers */ struct swig_cast_info *next; /* pointer to next cast in linked list */ struct swig_cast_info *prev; /* pointer to the previous cast */ } swig_cast_info; /* Structure used to store module information * Each module generates one structure like this, and the runtime collects * all of these structures and stores them in a circularly linked list.*/ typedef struct swig_module_info { swig_type_info **types; /* Array of pointers to swig_type_info structures that are in this module */ size_t size; /* Number of types in this module */ struct swig_module_info *next; /* Pointer to next element in circularly linked list */ swig_type_info **type_initial; /* Array of initially generated type structures */ swig_cast_info **cast_initial; /* Array of initially generated casting structures */ void *clientdata; /* Language specific module data */ } swig_module_info; /* Compare two type names skipping the space characters, therefore "char*" == "char *" and "Class" == "Class", etc. Return 0 when the two name types are equivalent, as in strncmp, but skipping ' '. */ SWIGRUNTIME int SWIG_TypeNameComp(const char *f1, const char *l1, const char *f2, const char *l2) { for (;(f1 != l1) && (f2 != l2); ++f1, ++f2) { while ((*f1 == ' ') && (f1 != l1)) ++f1; while ((*f2 == ' ') && (f2 != l2)) ++f2; if (*f1 != *f2) return (int)(*f1 - *f2); } return (l1 - f1) - (l2 - f2); } /* Check type equivalence in a name list like ||... Return 0 if not equal, 1 if equal */ SWIGRUNTIME int SWIG_TypeEquiv(const char *nb, const char *tb) { int equiv = 0; const char* te = tb + strlen(tb); const char* ne = nb; while (!equiv && *ne) { for (nb = ne; *ne; ++ne) { if (*ne == '|') break; } equiv = (SWIG_TypeNameComp(nb, ne, tb, te) == 0) ? 1 : 0; if (*ne) ++ne; } return equiv; } /* Check type equivalence in a name list like ||... Return 0 if equal, -1 if nb < tb, 1 if nb > tb */ SWIGRUNTIME int SWIG_TypeCompare(const char *nb, const char *tb) { int equiv = 0; const char* te = tb + strlen(tb); const char* ne = nb; while (!equiv && *ne) { for (nb = ne; *ne; ++ne) { if (*ne == '|') break; } equiv = (SWIG_TypeNameComp(nb, ne, tb, te) == 0) ? 1 : 0; if (*ne) ++ne; } return equiv; } /* think of this as a c++ template<> or a scheme macro */ #define SWIG_TypeCheck_Template(comparison, ty) \ if (ty) { \ swig_cast_info *iter = ty->cast; \ while (iter) { \ if (comparison) { \ if (iter == ty->cast) return iter; \ /* Move iter to the top of the linked list */ \ iter->prev->next = iter->next; \ if (iter->next) \ iter->next->prev = iter->prev; \ iter->next = ty->cast; \ iter->prev = 0; \ if (ty->cast) ty->cast->prev = iter; \ ty->cast = iter; \ return iter; \ } \ iter = iter->next; \ } \ } \ return 0 /* Check the typename */ SWIGRUNTIME swig_cast_info * SWIG_TypeCheck(const char *c, swig_type_info *ty) { SWIG_TypeCheck_Template(strcmp(iter->type->name, c) == 0, ty); } /* Same as previous function, except strcmp is replaced with a pointer comparison */ SWIGRUNTIME swig_cast_info * SWIG_TypeCheckStruct(swig_type_info *from, swig_type_info *into) { SWIG_TypeCheck_Template(iter->type == from, into); } /* Cast a pointer up an inheritance hierarchy */ SWIGRUNTIMEINLINE void * SWIG_TypeCast(swig_cast_info *ty, void *ptr) { return ((!ty) || (!ty->converter)) ? ptr : (*ty->converter)(ptr); } /* Dynamic pointer casting. Down an inheritance hierarchy */ SWIGRUNTIME swig_type_info * SWIG_TypeDynamicCast(swig_type_info *ty, void **ptr) { swig_type_info *lastty = ty; if (!ty || !ty->dcast) return ty; while (ty && (ty->dcast)) { ty = (*ty->dcast)(ptr); if (ty) lastty = ty; } return lastty; } /* Return the name associated with this type */ SWIGRUNTIMEINLINE const char * SWIG_TypeName(const swig_type_info *ty) { return ty->name; } /* Return the pretty name associated with this type, that is an unmangled type name in a form presentable to the user. */ SWIGRUNTIME const char * SWIG_TypePrettyName(const swig_type_info *type) { /* The "str" field contains the equivalent pretty names of the type, separated by vertical-bar characters. We choose to print the last name, as it is often (?) the most specific. */ if (type->str != NULL) { const char *last_name = type->str; const char *s; for (s = type->str; *s; s++) if (*s == '|') last_name = s+1; return last_name; } else return type->name; } /* Set the clientdata field for a type */ SWIGRUNTIME void SWIG_TypeClientData(swig_type_info *ti, void *clientdata) { swig_cast_info *cast = ti->cast; /* if (ti->clientdata == clientdata) return; */ ti->clientdata = clientdata; while (cast) { if (!cast->converter) { swig_type_info *tc = cast->type; if (!tc->clientdata) { SWIG_TypeClientData(tc, clientdata); } } cast = cast->next; } } /* Search for a swig_type_info structure only by mangled name Search is a O(log #types) We start searching at module start, and finish searching when start == end. Note: if start == end at the beginning of the function, we go all the way around the circular list. */ SWIGRUNTIME swig_type_info * SWIG_MangledTypeQueryModule(swig_module_info *start, swig_module_info *end, const char *name) { swig_module_info *iter = start; do { if (iter->size) { register size_t l = 0; register size_t r = iter->size - 1; do { /* since l+r >= 0, we can (>> 1) instead (/ 2) */ register size_t i = (l + r) >> 1; const char *iname = iter->types[i]->name; if (iname) { register int compare = strcmp(name, iname); if (compare == 0) { return iter->types[i]; } else if (compare < 0) { if (i) { r = i - 1; } else { break; } } else if (compare > 0) { l = i + 1; } } else { break; /* should never happen */ } } while (l <= r); } iter = iter->next; } while (iter != end); return 0; } /* Search for a swig_type_info structure for either a mangled name or a human readable name. It first searches the mangled names of the types, which is a O(log #types) If a type is not found it then searches the human readable names, which is O(#types). We start searching at module start, and finish searching when start == end. Note: if start == end at the beginning of the function, we go all the way around the circular list. */ SWIGRUNTIME swig_type_info * SWIG_TypeQueryModule(swig_module_info *start, swig_module_info *end, const char *name) { /* STEP 1: Search the name field using binary search */ swig_type_info *ret = SWIG_MangledTypeQueryModule(start, end, name); if (ret) { return ret; } else { /* STEP 2: If the type hasn't been found, do a complete search of the str field (the human readable name) */ swig_module_info *iter = start; do { register size_t i = 0; for (; i < iter->size; ++i) { if (iter->types[i]->str && (SWIG_TypeEquiv(iter->types[i]->str, name))) return iter->types[i]; } iter = iter->next; } while (iter != end); } /* neither found a match */ return 0; } /* Pack binary data into a string */ SWIGRUNTIME char * SWIG_PackData(char *c, void *ptr, size_t sz) { static const char hex[17] = "0123456789abcdef"; register const unsigned char *u = (unsigned char *) ptr; register const unsigned char *eu = u + sz; for (; u != eu; ++u) { register unsigned char uu = *u; *(c++) = hex[(uu & 0xf0) >> 4]; *(c++) = hex[uu & 0xf]; } return c; } /* Unpack binary data from a string */ SWIGRUNTIME const char * SWIG_UnpackData(const char *c, void *ptr, size_t sz) { register unsigned char *u = (unsigned char *) ptr; register const unsigned char *eu = u + sz; for (; u != eu; ++u) { register char d = *(c++); register unsigned char uu = 0; if ((d >= '0') && (d <= '9')) uu = ((d - '0') << 4); else if ((d >= 'a') && (d <= 'f')) uu = ((d - ('a'-10)) << 4); else return (char *) 0; d = *(c++); if ((d >= '0') && (d <= '9')) uu |= (d - '0'); else if ((d >= 'a') && (d <= 'f')) uu |= (d - ('a'-10)); else return (char *) 0; *u = uu; } return c; } /* Pack 'void *' into a string buffer. */ SWIGRUNTIME char * SWIG_PackVoidPtr(char *buff, void *ptr, const char *name, size_t bsz) { char *r = buff; if ((2*sizeof(void *) + 2) > bsz) return 0; *(r++) = '_'; r = SWIG_PackData(r,&ptr,sizeof(void *)); if (strlen(name) + 1 > (bsz - (r - buff))) return 0; strcpy(r,name); return buff; } SWIGRUNTIME const char * SWIG_UnpackVoidPtr(const char *c, void **ptr, const char *name) { if (*c != '_') { if (strcmp(c,"NULL") == 0) { *ptr = (void *) 0; return name; } else { return 0; } } return SWIG_UnpackData(++c,ptr,sizeof(void *)); } SWIGRUNTIME char * SWIG_PackDataName(char *buff, void *ptr, size_t sz, const char *name, size_t bsz) { char *r = buff; size_t lname = (name ? strlen(name) : 0); if ((2*sz + 2 + lname) > bsz) return 0; *(r++) = '_'; r = SWIG_PackData(r,ptr,sz); if (lname) { strncpy(r,name,lname+1); } else { *r = 0; } return buff; } SWIGRUNTIME const char * SWIG_UnpackDataName(const char *c, void *ptr, size_t sz, const char *name) { if (*c != '_') { if (strcmp(c,"NULL") == 0) { memset(ptr,0,sz); return name; } else { return 0; } } return SWIG_UnpackData(++c,ptr,sz); } #ifdef __cplusplus } #endif /*********************************************************************** * rubytracking.swg * * This file contains support for tracking mappings from * Ruby objects to C++ objects. This functionality is needed * to implement mark functions for Ruby's mark and sweep * garbage collector. ************************************************************************/ /* Global Ruby hash table to store Trackings from C/C++ structs to Ruby Objects. */ static VALUE swig_ruby_trackings; /* Setup a Ruby hash table to store Trackings */ static void SWIG_RubyInitializeTrackings() { /* Create a ruby hash table to store Trackings from C++ objects to Ruby objects. Also make sure to tell the garabage collector about the hash table. */ swig_ruby_trackings = rb_hash_new(); rb_gc_register_address(&swig_ruby_trackings); } /* Get a Ruby number to reference a pointer */ static VALUE SWIG_RubyPtrToReference(void* ptr) { /* We cast the pointer to an unsigned long and then store a reference to it using a Ruby number object. */ /* Convert the pointer to a Ruby number */ unsigned long value = (unsigned long) ptr; return LONG2NUM(value); } /* Get a Ruby number to reference an object */ static VALUE SWIG_RubyObjectToReference(VALUE object) { /* We cast the object to an unsigned long and then store a reference to it using a Ruby number object. */ /* Convert the Object to a Ruby number */ unsigned long value = (unsigned long) object; return LONG2NUM(value); } /* Get a Ruby object from a previously stored reference */ static VALUE SWIG_RubyReferenceToObject(VALUE reference) { /* The provided Ruby number object is a reference to the Ruby object we want.*/ /* First convert the Ruby number to a C number */ unsigned long value = NUM2LONG(reference); return (VALUE) value; } /* Add a Tracking from a C/C++ struct to a Ruby object */ static void SWIG_RubyAddTracking(void* ptr, VALUE object) { /* In a Ruby hash table we store the pointer and the associated Ruby object. The trick here is that we cannot store the Ruby object directly - if we do then it cannot be garbage collected. So instead we typecast it as a unsigned long and convert it to a Ruby number object.*/ /* Get a reference to the pointer as a Ruby number */ VALUE key = SWIG_RubyPtrToReference(ptr); /* Get a reference to the Ruby object as a Ruby number */ VALUE value = SWIG_RubyObjectToReference(object); /* Store the mapping to the global hash table. */ rb_hash_aset(swig_ruby_trackings, key, value); } /* Get the Ruby object that owns the specified C/C++ struct */ static VALUE SWIG_RubyInstanceFor(void* ptr) { /* Get a reference to the pointer as a Ruby number */ VALUE key = SWIG_RubyPtrToReference(ptr); /* Now lookup the value stored in the global hash table */ VALUE value = rb_hash_aref(swig_ruby_trackings, key); if (value == Qnil) { /* No object exists - return nil. */ return Qnil; } else { /* Convert this value to Ruby object */ return SWIG_RubyReferenceToObject(value); } } /* Remove a Tracking from a C/C++ struct to a Ruby object */ static void SWIG_RubyRemoveTracking(void* ptr) { /* Get a reference to the pointer as a Ruby number */ VALUE key = SWIG_RubyPtrToReference(ptr); /* Define delete method - in C++ this could be marked as static but unfortunately not in C. */ VALUE delete_function = rb_intern("delete"); /* Delete the object from the hash table by calling Ruby's do this we need to call the Hash.delete method.*/ rb_funcall(swig_ruby_trackings, delete_function, 1, key); } /* This is a helper method that unlinks a Ruby object from its underlying C++ object. This is needed if the lifetime of the Ruby object is longer than the C++ object */ static void SWIG_RubyUnlinkObjects(void* ptr) { VALUE object = SWIG_RubyInstanceFor(ptr); if (object != Qnil) { DATA_PTR(object) = 0; } } /* Common SWIG API */ #define SWIG_ConvertPtr(obj, pp, type, flags) \ SWIG_Ruby_ConvertPtr(obj, pp, type, flags) #define SWIG_NewPointerObj(p, type, flags) \ SWIG_Ruby_NewPointerObj(p, type, flags) #define SWIG_MustGetPtr(p, type, argnum, flags) \ SWIG_Ruby_MustGetPtr(p, type, argnum, flags) #define SWIG_GetModule(clientdata) \ SWIG_Ruby_GetModule() #define SWIG_SetModule(clientdata, pointer) \ SWIG_Ruby_SetModule(pointer) /* Ruby-specific SWIG API */ #define SWIG_InitRuntime() \ SWIG_Ruby_InitRuntime() #define SWIG_define_class(ty) \ SWIG_Ruby_define_class(ty) #define SWIG_NewClassInstance(value, ty) \ SWIG_Ruby_NewClassInstance(value, ty) #define SWIG_MangleStr(value) \ SWIG_Ruby_MangleStr(value) #define SWIG_CheckConvert(value, ty) \ SWIG_Ruby_CheckConvert(value, ty) #define SWIG_NewPackedObj(ptr, sz, ty) \ SWIG_Ruby_NewPackedObj(ptr, sz, ty) #define SWIG_ConvertPacked(obj, ptr, sz, ty, flags) \ SWIG_Ruby_ConvertPacked(obj, ptr, sz, ty, flags) /* rubydef.swg */ #ifdef __cplusplus extern "C" { #endif static VALUE _mSWIG = Qnil; static VALUE _cSWIG_Pointer = Qnil; static VALUE swig_runtime_data_type_pointer = Qnil; /* Initialize Ruby runtime support */ static void SWIG_Ruby_InitRuntime(void) { if (_mSWIG == Qnil) { _mSWIG = rb_define_module("SWIG"); } } /* Define Ruby class for C type */ static void SWIG_Ruby_define_class(swig_type_info *type) { VALUE klass; char *klass_name = (char *) malloc(4 + strlen(type->name) + 1); sprintf(klass_name, "TYPE%s", type->name); if (NIL_P(_cSWIG_Pointer)) { _cSWIG_Pointer = rb_define_class_under(_mSWIG, "Pointer", rb_cObject); rb_undef_method(CLASS_OF(_cSWIG_Pointer), "new"); } klass = rb_define_class_under(_mSWIG, klass_name, _cSWIG_Pointer); free((void *) klass_name); } /* Create a new pointer object */ static VALUE SWIG_Ruby_NewPointerObj(void *ptr, swig_type_info *type, int flags) { int own = flags & SWIG_POINTER_OWN; int track = flags & SWIG_TRACK_OBJECTS; char *klass_name; swig_class *sklass; VALUE klass; VALUE obj; if (!ptr) return Qnil; /* Have we already wrapped this pointer? */ if (track) { obj = SWIG_RubyInstanceFor(ptr); if (obj != Qnil) { return obj; } } if (type->clientdata) { sklass = (swig_class *) type->clientdata; obj = Data_Wrap_Struct(sklass->klass, VOIDFUNC(sklass->mark), (own ? VOIDFUNC(sklass->destroy) : 0), ptr); } else { klass_name = (char *) malloc(4 + strlen(type->name) + 1); sprintf(klass_name, "TYPE%s", type->name); klass = rb_const_get(_mSWIG, rb_intern(klass_name)); free((void *) klass_name); obj = Data_Wrap_Struct(klass, 0, 0, ptr); } rb_iv_set(obj, "__swigtype__", rb_str_new2(type->name)); /* Keep track of this object if necessary */ if (track) { SWIG_RubyAddTracking(ptr, obj); } return obj; } /* Create a new class instance (always owned) */ static VALUE SWIG_Ruby_NewClassInstance(VALUE klass, swig_type_info *type) { VALUE obj; swig_class *sklass = (swig_class *) type->clientdata; obj = Data_Wrap_Struct(klass, VOIDFUNC(sklass->mark), VOIDFUNC(sklass->destroy), 0); rb_iv_set(obj, "__swigtype__", rb_str_new2(type->name)); return obj; } /* Get type mangle from class name */ static SWIGINLINE char * SWIG_Ruby_MangleStr(VALUE obj) { VALUE stype = rb_iv_get(obj, "__swigtype__"); return StringValuePtr(stype); } /* Convert a pointer value */ static int SWIG_Ruby_ConvertPtr(VALUE obj, void **ptr, swig_type_info *ty, int flags) { char *c; swig_cast_info *tc; /* Grab the pointer */ if (NIL_P(obj)) { *ptr = 0; return 0; } else { Data_Get_Struct(obj, void, *ptr); } /* Check to see if the input object is giving up ownership of the underlying C struct or C++ object. If so then we need to reset the destructor since the Ruby object no longer owns the underlying C++ object.*/ if (flags & SWIG_POINTER_DISOWN) { if (flags & SWIG_TRACK_OBJECTS) { /* We are tracking objects. Thus we change the destructor * to SWIG_RubyRemoveTracking. This allows us to * remove the mapping from the C++ to Ruby object * when the Ruby object is garbage collected. If we don't * do this, then it is possible we will return a reference * to a Ruby object that no longer exists thereby crashing Ruby. */ RDATA(obj)->dfree = SWIG_RubyRemoveTracking; } else { RDATA(obj)->dfree = 0; } } /* Do type-checking if type info was provided */ if (ty) { if (ty->clientdata) { if (rb_obj_is_kind_of(obj, ((swig_class *) (ty->clientdata))->klass)) { if (*ptr == 0) rb_raise(rb_eRuntimeError, "This %s already released", ty->str); return 0; } } if ((c = SWIG_MangleStr(obj)) == NULL) { if (flags & SWIG_POINTER_EXCEPTION) rb_raise(rb_eTypeError, "Expected %s", ty->str); else return -1; } tc = SWIG_TypeCheck(c, ty); if (!tc) { if (flags & SWIG_POINTER_EXCEPTION) rb_raise(rb_eTypeError, "Expected %s", ty->str); else return -1; } *ptr = SWIG_TypeCast(tc, *ptr); } return 0; } /* Convert a pointer value, signal an exception on a type mismatch */ static SWIGINLINE void * SWIG_Ruby_MustGetPtr(VALUE obj, swig_type_info *ty, int argnum, int flags) { void *result; SWIG_ConvertPtr(obj, &result, ty, flags | SWIG_POINTER_EXCEPTION); return result; } /* Check convert */ static SWIGINLINE int SWIG_Ruby_CheckConvert(VALUE obj, swig_type_info *ty) { char *c = SWIG_MangleStr(obj); if (!c) return 0; return SWIG_TypeCheck(c,ty) != 0; } static VALUE SWIG_Ruby_NewPackedObj(void *ptr, int sz, swig_type_info *type) { char result[1024]; char *r = result; if ((2*sz + 1 + strlen(type->name)) > 1000) return 0; *(r++) = '_'; r = SWIG_PackData(r, ptr, sz); strcpy(r, type->name); return rb_str_new2(result); } /* Convert a packed value value */ static void SWIG_Ruby_ConvertPacked(VALUE obj, void *ptr, int sz, swig_type_info *ty, int flags) { swig_cast_info *tc; const char *c; if (TYPE(obj) != T_STRING) goto type_error; c = StringValuePtr(obj); /* Pointer values must start with leading underscore */ if (*c != '_') goto type_error; c++; c = SWIG_UnpackData(c, ptr, sz); if (ty) { tc = SWIG_TypeCheck(c, ty); if (!tc) goto type_error; } return; type_error: if (flags) { if (ty) { rb_raise(rb_eTypeError, "Type error. Expected %s", ty->name); } else { rb_raise(rb_eTypeError, "Expected a pointer"); } } } static swig_module_info *SWIG_Ruby_GetModule() { VALUE pointer; swig_module_info *ret = 0; /* first check if pointer already created */ pointer = rb_gv_get("$swig_runtime_data_type_pointer" SWIG_RUNTIME_VERSION SWIG_TYPE_TABLE_NAME); if (pointer != Qnil) { Data_Get_Struct(pointer, swig_module_info, ret); } return ret; } static void SWIG_Ruby_SetModule(swig_module_info *pointer) { /* register a new class */ VALUE cl = rb_define_class("swig_runtime_data", rb_cObject); /* create and store the structure pointer to a global variable */ swig_runtime_data_type_pointer = Data_Wrap_Struct(cl, 0, 0, pointer); rb_define_readonly_variable("$swig_runtime_data_type_pointer" SWIG_RUNTIME_VERSION SWIG_TYPE_TABLE_NAME, &swig_runtime_data_type_pointer); } #ifdef __cplusplus } #endif /* -------- TYPES TABLE (BEGIN) -------- */ #define SWIGTYPE_p_Buf_triple_t swig_types[0] #define SWIGTYPE_p_CdIo_t swig_types[1] #define SWIGTYPE_p_HWInfo_t swig_types[2] #define SWIGTYPE_p_cdio_hwinfo_t swig_types[3] #define SWIGTYPE_p_cdio_read_mode_t swig_types[4] #define SWIGTYPE_p_char swig_types[5] #define SWIGTYPE_p_int swig_types[6] #define SWIGTYPE_p_long swig_types[7] #define SWIGTYPE_p_off_t swig_types[8] #define SWIGTYPE_p_unsigned_int swig_types[9] #define SWIGTYPE_p_unsigned_long swig_types[10] static swig_type_info *swig_types[12]; static swig_module_info swig_module = {swig_types, 11, 0, 0, 0, 0}; #define SWIG_TypeQuery(name) SWIG_TypeQueryModule(&swig_module, &swig_module, name) #define SWIG_MangledTypeQuery(name) SWIG_MangledTypeQueryModule(&swig_module, &swig_module, name) /* -------- TYPES TABLE (END) -------- */ #define SWIG_init Init_rubycdio #define SWIG_name "Rubycdio" static VALUE mRubycdio; static void SWIG_AsVal(VALUE obj, int *val) { *val = (int) NUM2INT(obj); } /* Includes the header in the wrapper code */ #include #include #include /* When libcdio version > 0.76 comes out this won't be needed. */ #include #if LIBCDIO_VERSION_NUM <= 76 /**< Masks derived from above... */ #undef CDIO_DRIVE_CAP_WRITE_DVD #define CDIO_DRIVE_CAP_WRITE_DVD ( \ CDIO_DRIVE_CAP_WRITE_DVD_R \ | CDIO_DRIVE_CAP_WRITE_DVD_PR \ | CDIO_DRIVE_CAP_WRITE_DVD_RAM \ | CDIO_DRIVE_CAP_WRITE_DVD_RW \ | CDIO_DRIVE_CAP_WRITE_DVD_RPW \ ) /** All the different ways a block/sector can be read. */ typedef enum { CDIO_READ_MODE_AUDIO, /**< CD-DA, audio, Red Book */ CDIO_READ_MODE_M1F1, /**< Mode 1 Form 1 */ CDIO_READ_MODE_M1F2, /**< Mode 1 Form 2 */ CDIO_READ_MODE_M2F1, /**< Mode 2 Form 1 */ CDIO_READ_MODE_M2F2, /**< Mode 2 Form 2 */ } cdio_read_mode_t; /*! Reads a number of sectors (AKA blocks). @param p_buf place to read data into. The caller should make sure this location is large enough. See below for size information. @param read_mode the kind of "mode" to use in reading. @param i_lsn sector to read @param i_blocks number of sectors to read @return DRIVER_OP_SUCCESS (0) if no error, other (negative) enumerations are returned on error. If read_mode is CDIO_MODE_AUDIO, *p_buf should hold at least CDIO_FRAMESIZE_RAW * i_blocks bytes. If read_mode is CDIO_MODE_DATA, *p_buf should hold at least i_blocks times either ISO_BLOCKSIZE, M1RAW_SECTOR_SIZE or M2F2_SECTOR_SIZE depending on the kind of sector getting read. If you don't know whether you have a Mode 1/2, Form 1/ Form 2/Formless sector best to reserve space for the maximum which is M2RAW_SECTOR_SIZE. If read_mode is CDIO_MODE_M2F1, *p_buf should hold at least M2RAW_SECTOR_SIZE * i_blocks bytes. If read_mode is CDIO_MODE_M2F2, *p_buf should hold at least CDIO_CD_FRAMESIZE * i_blocks bytes. */ driver_return_code_t cdio_read_sectors(const CdIo_t *p_cdio, void *p_buf, lsn_t i_lsn, cdio_read_mode_t read_mode, uint32_t i_blocks) { switch(read_mode) { case CDIO_READ_MODE_AUDIO: return cdio_read_audio_sectors (p_cdio, p_buf, i_lsn, i_blocks); case CDIO_READ_MODE_M1F1: return cdio_read_mode1_sectors (p_cdio, p_buf, i_lsn, false, i_blocks); case CDIO_READ_MODE_M1F2: return cdio_read_mode1_sectors (p_cdio, p_buf, i_lsn, true, i_blocks); case CDIO_READ_MODE_M2F1: return cdio_read_mode2_sectors (p_cdio, p_buf, i_lsn, false, i_blocks); case CDIO_READ_MODE_M2F2: return cdio_read_mode2_sectors (p_cdio, p_buf, i_lsn, true, i_blocks); } /* Can't happen. Just to shut up gcc. */ return DRIVER_OP_ERROR; } driver_return_code_t cdio_eject_media_drive (const char *psz_drive) { CdIo_t *p_cdio = cdio_open (psz_drive, DRIVER_DEVICE); if (p_cdio) { return cdio_eject_media(&p_cdio); } else { return DRIVER_OP_UNINIT; } } #endif /* LIBCDIO_VERSION_NUM <= 76 */ #ifdef __cplusplus extern "C" { #endif #ifdef HAVE_SYS_TIME_H # include struct timeval rb_time_timeval(VALUE); #endif #ifdef __cplusplus } #endif #ifdef __cplusplus extern "C" { #endif #include "rubyio.h" #ifdef __cplusplus } #endif driver_return_code_t audio_play_lsn (CdIo_t *p_cdio, lsn_t start_lsn, lsn_t end_lsn) { msf_t start_msf; msf_t end_msf; cdio_lsn_to_msf (start_lsn, &start_msf); cdio_lsn_to_msf (end_lsn, &end_msf); return cdio_audio_play_msf(p_cdio, &start_msf, &end_msf); } typedef struct { char *data; size_t size; driver_return_code_t drc; } Buf_triple_t; Buf_triple_t read_cd(const CdIo_t *p_cdio, size_t i_size) { Buf_triple_t buf; buf.data = calloc(1, i_size); buf.size = cdio_read(p_cdio, buf.data, i_size); if (buf.size == -1) { free(buf.data); buf.drc = DRIVER_OP_ERROR; buf.data = NULL; } return buf; } /* NOTE: arg 4 *must* be the size of the buf for the buf_t typemap. */ Buf_triple_t read_sectors(const CdIo_t *p_cdio, lsn_t i_lsn, cdio_read_mode_t read_mode, size_t i_size) { Buf_triple_t buf; uint32_t i_blocks; uint16_t i_blocksize; switch (read_mode) { case CDIO_READ_MODE_AUDIO: i_blocksize = CDIO_CD_FRAMESIZE_RAW; break; case CDIO_READ_MODE_M1F1: i_blocksize = M2RAW_SECTOR_SIZE; break; case CDIO_READ_MODE_M1F2: i_blocksize = M2RAW_SECTOR_SIZE; break; case CDIO_READ_MODE_M2F1: i_blocksize = CDIO_CD_FRAMESIZE; break; case CDIO_READ_MODE_M2F2: i_blocksize = M2F2_SECTOR_SIZE; break; default: buf.data = NULL; buf.drc = DRIVER_OP_BAD_PARAMETER; buf.size = -1; return buf; } buf.data = calloc(1, i_size); i_blocks = i_size / i_blocksize; buf.drc = cdio_read_sectors(p_cdio, buf.data, i_lsn, read_mode, i_blocks); if (buf.drc < 0) { free(buf.data); buf.data = NULL; buf.size = -1; } else { buf.size = i_size; } return buf; } Buf_triple_t read_data_bytes(const CdIo_t *p_cdio, lsn_t i_lsn, int16_t i_blocksize, size_t i_size) { uint32_t i_blocks = i_size / i_blocksize; Buf_triple_t buf; switch (i_blocksize) { case CDIO_CD_FRAMESIZE: case CDIO_CD_FRAMESIZE_RAW: case M2F2_SECTOR_SIZE: case M2RAW_SECTOR_SIZE: break; default: /* Don't know about these block sizes */ buf.data = NULL; buf.drc = DRIVER_OP_BAD_PARAMETER; buf.size = -1; return buf; } buf.data = calloc(1, i_size); #if DEBUGGING printf("p_cdio: %x, i_size: %d, lsn: %d, blocksize %d, blocks %d\n", p_cdio, i_size, i_lsn, i_blocksize, i_blocks); #endif buf.drc = cdio_read_data_sectors (p_cdio, buf.data, i_lsn, i_blocksize, i_blocks); #if DEBUGGING printf("drc: %d\n", buf.drc); #endif if (buf.drc < 0) { buf.data = NULL; buf.size = -1; } else { buf.size = i_size; } return buf; } char *get_track_msf(const CdIo_t *p_cdio, track_t i_track) { msf_t msf; if (!cdio_get_track_msf( p_cdio, i_track, &msf )) { return NULL; } else { return cdio_msf_to_str( &msf ); } } const char *get_track_format(const CdIo_t *p_cdio, track_t i_track) { track_format_t track_format = cdio_get_track_format(p_cdio, i_track); return track_format2str[track_format]; } typedef char ** DeviceList_t; static VALUE output_helper(VALUE target, VALUE o) { if (NIL_P(target)) { target = o; } else { if (TYPE(target) != T_ARRAY) { VALUE o2 = target; target = rb_ary_new(); rb_ary_push(target, o2); } rb_ary_push(target, o); } return target; } driver_return_code_t close_tray(const char *psz_drive, driver_id_t p_driver_id, driver_id_t *p_out_driver_id) { *p_out_driver_id = p_driver_id; return cdio_close_tray(psz_drive, p_out_driver_id); } const char * driver_errmsg(driver_return_code_t drc) { switch(drc) { case DRIVER_OP_SUCCESS: return "driver operation was successful"; case DRIVER_OP_ERROR: return "driver I/O error"; case DRIVER_OP_UNSUPPORTED: return "driver operatation not supported"; case DRIVER_OP_UNINIT: return "driver not initialized"; case DRIVER_OP_NOT_PERMITTED: return "driver operatation not permitted"; case DRIVER_OP_BAD_PARAMETER: return "bad parameter passed"; case DRIVER_OP_BAD_POINTER: return "bad pointer to memory area"; case DRIVER_OP_NO_DRIVER: return "driver not available"; default: return "unknown or bad driver return status"; } } driver_return_code_t eject_media (CdIo_t *p_cdio) { /* libcdio routines uses a Cdio_t **p_cdio, so we have to pass in something it can clobber. */ CdIo_t **pp_cdio = &p_cdio; return cdio_eject_media (pp_cdio); } char * get_default_device_driver(driver_id_t driver_id, driver_id_t *p_out_driver_id) { *p_out_driver_id = driver_id; return cdio_get_default_device_driver(p_out_driver_id); } DeviceList_t get_devices_ret (driver_id_t driver_id, driver_id_t *p_out_driver_id) { *p_out_driver_id = driver_id; return cdio_get_devices_ret (p_out_driver_id); } DeviceList_t get_devices_with_cap (unsigned int capabilities, bool b_any) { /* FIXME: ? libcdio allows one to specify a list (char **) of devices to search. Don't know how to do that via SWIG though. */ return cdio_get_devices_with_cap (NULL, (cdio_fs_anal_t) capabilities, b_any); } DeviceList_t get_devices_with_cap_ret (unsigned int capabilities, bool b_any, driver_id_t *p_out_driver_id) { /* FIXME: ? libcdio allows one to specify a list (char **) of devices to search. Don't know how to do that via SWIG though. */ return cdio_get_devices_with_cap_ret (NULL, (cdio_fs_anal_t) capabilities, b_any, p_out_driver_id); } int have_driver (unsigned int driver_id) { if (driver_id < CDIO_MIN_DRIVER || driver_id > CDIO_MAX_DRIVER) return -1; if (cdio_have_driver(driver_id)) return 1; return 0; } /*! True if CD-ROM understand ATAPI commands. */ bool have_ATAPI (CdIo_t *p_cdio) { return cdio_have_atapi(p_cdio) == yep; } typedef char * buf_t; bool is_device(const char *psz_source, driver_id_t driver_id) { #if LIBCDIO_VERSION_NUM <= 76 /* There is a bug in the 0.76 code when driver_id==DRIVER_UNKNOWN or DRIVER_DEVICE, so here we'll use code from compat.swg. */ if (DRIVER_UNKNOWN == driver_id || DRIVER_DEVICE == driver_id) { char *psz_drive = cdio_get_default_device_driver(&driver_id); /* We don't need the psz_drive, just the driver_id */ free(psz_drive); } #endif /* LIBCDIO_VERSION_NUM <= 76 */ return cdio_is_device(psz_source, driver_id); } typedef struct { cdio_hwinfo_t hw; bool result; } HWInfo_t; const HWInfo_t get_hwinfo ( const CdIo_t *p_cdio) { static HWInfo_t info; info.result = cdio_get_hwinfo(p_cdio, &info.hw); return info; } CdIo_t *open_cd(const char *psz_orig_source, driver_id_t driver_id, const char *psz_orig_access_mode) { const char *psz_source = psz_orig_source; const char *psz_access_mode = psz_orig_access_mode; if (psz_source && strlen(psz_source) == 0) psz_source = NULL; if (psz_access_mode || strlen(psz_access_mode) == 0) psz_access_mode = NULL; return cdio_open_am(psz_source, driver_id, psz_access_mode); } const char * get_disc_mode (CdIo_t *p_cdio) { discmode_t discmode = cdio_get_discmode(p_cdio); if (CDIO_DISC_MODE_ERROR == discmode) return NULL; return discmode2str[discmode]; } static VALUE _wrap_cdio_read_sectors(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; void *arg2 = (void *) 0 ; lsn_t arg3 ; cdio_read_mode_t arg4 ; unsigned int arg5 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 5) || (argc > 5)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 5)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); SWIG_ConvertPtr(argv[1], (void **) &arg2, 0, SWIG_POINTER_EXCEPTION|0); arg3 = NUM2INT(argv[2]); arg4 = (cdio_read_mode_t) NUM2INT(argv[3]); arg5 = NUM2UINT(argv[4]); result = (driver_return_code_t)cdio_read_sectors((CdIo_t const *)arg1,arg2,arg3,arg4,arg5); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_cdio_eject_media_drive(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); result = (driver_return_code_t)cdio_eject_media_drive((char const *)arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_audio_pause(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (driver_return_code_t)cdio_audio_pause(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_audio_play_lsn(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; lsn_t arg2 ; lsn_t arg3 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 3) || (argc > 3)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 3)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2INT(argv[1]); arg3 = NUM2INT(argv[2]); result = (driver_return_code_t)audio_play_lsn(arg1,arg2,arg3); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_audio_resume(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (driver_return_code_t)cdio_audio_resume(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_audio_stop(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (driver_return_code_t)cdio_audio_stop(arg1); vresult = INT2NUM(result); return vresult; } swig_class cBuf_triple_t; static VALUE _wrap_Buf_triple_t_data_set(int argc, VALUE *argv, VALUE self) { Buf_triple_t *arg1 = (Buf_triple_t *) 0 ; char *arg2 = (char *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_Buf_triple_t, 0); arg2 = StringValuePtr(argv[0]); { if (arg1->data) free((char*)arg1->data); if (arg2) { arg1->data = (char *) malloc(strlen(arg2)+1); strcpy((char*)arg1->data,arg2); } else { arg1->data = 0; } } return Qnil; } static VALUE _wrap_Buf_triple_t_data_get(int argc, VALUE *argv, VALUE self) { Buf_triple_t *arg1 = (Buf_triple_t *) 0 ; char *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_Buf_triple_t, 0); result = (char *) ((arg1)->data); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_Buf_triple_t_size_set(int argc, VALUE *argv, VALUE self) { Buf_triple_t *arg1 = (Buf_triple_t *) 0 ; size_t arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_Buf_triple_t, 0); arg2 = NUM2ULONG(argv[0]); if (arg1) (arg1)->size = arg2; return Qnil; } static VALUE _wrap_Buf_triple_t_size_get(int argc, VALUE *argv, VALUE self) { Buf_triple_t *arg1 = (Buf_triple_t *) 0 ; size_t result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_Buf_triple_t, 0); result = ((arg1)->size); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_Buf_triple_t_drc_set(int argc, VALUE *argv, VALUE self) { Buf_triple_t *arg1 = (Buf_triple_t *) 0 ; driver_return_code_t arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_Buf_triple_t, 0); arg2 = NUM2LONG(argv[0]); if (arg1) (arg1)->drc = arg2; return Qnil; } static VALUE _wrap_Buf_triple_t_drc_get(int argc, VALUE *argv, VALUE self) { Buf_triple_t *arg1 = (Buf_triple_t *) 0 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_Buf_triple_t, 0); result = (driver_return_code_t) ((arg1)->drc); vresult = INT2NUM(result); return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_Buf_triple_t_allocate(VALUE self) { #else static VALUE _wrap_Buf_triple_t_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_Buf_triple_t); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_Buf_triple_t(int argc, VALUE *argv, VALUE self) { Buf_triple_t *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (Buf_triple_t *)(Buf_triple_t *) calloc(1, sizeof(Buf_triple_t)); DATA_PTR(self) = result; return self; } static void free_Buf_triple_t(Buf_triple_t *arg1) { free((char *) arg1); } static VALUE _wrap_lseek(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; off_t arg2 ; int arg3 = (int) SEEK_SET ; off_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 3)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); { off_t * ptr; SWIG_ConvertPtr(argv[1], (void **) &ptr, SWIGTYPE_p_off_t, 0); if (ptr) arg2 = *ptr; } if (argc > 2) { arg3 = NUM2INT(argv[2]); } result = cdio_lseek((CdIo_t const *)arg1,arg2,arg3); { off_t * resultptr; resultptr = (off_t *) malloc(sizeof(off_t)); memmove(resultptr, &result, sizeof(off_t)); vresult = SWIG_NewPointerObj((void *) resultptr, SWIGTYPE_p_off_t, 1); } return vresult; } static VALUE _wrap_read_cd(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; size_t arg2 ; Buf_triple_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2ULONG(argv[1]); result = read_cd((CdIo_t const *)arg1,arg2); { if (!(&result)->data) return Qnil; else { VALUE data_triple = rb_ary_new(); rb_ary_push(data_triple, rb_str_new((&result)->data, (&result)->size)); rb_ary_push(data_triple, INT2NUM((&result)->size)); rb_ary_push(data_triple, INT2NUM((&result)->drc)); free((&result)->data); return data_triple; } } return vresult; } static VALUE _wrap_read_sectors(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; lsn_t arg2 ; cdio_read_mode_t arg3 ; size_t arg4 ; Buf_triple_t result; VALUE vresult = Qnil; if ((argc < 4) || (argc > 4)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 4)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2INT(argv[1]); arg3 = (cdio_read_mode_t) NUM2INT(argv[2]); arg4 = NUM2ULONG(argv[3]); result = read_sectors((CdIo_t const *)arg1,arg2,arg3,arg4); { if (!(&result)->data) return Qnil; else { VALUE data_triple = rb_ary_new(); rb_ary_push(data_triple, rb_str_new((&result)->data, (&result)->size)); rb_ary_push(data_triple, INT2NUM((&result)->size)); rb_ary_push(data_triple, INT2NUM((&result)->drc)); free((&result)->data); return data_triple; } } return vresult; } static VALUE _wrap_read_data_bytes(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; lsn_t arg2 ; int16_t arg3 ; size_t arg4 ; Buf_triple_t result; VALUE vresult = Qnil; if ((argc < 4) || (argc > 4)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 4)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2INT(argv[1]); arg3 = NUM2INT(argv[2]); arg4 = NUM2ULONG(argv[3]); result = read_data_bytes((CdIo_t const *)arg1,arg2,arg3,arg4); { if (!(&result)->data) return Qnil; else { VALUE data_triple = rb_ary_new(); rb_ary_push(data_triple, rb_str_new((&result)->data, (&result)->size)); rb_ary_push(data_triple, INT2NUM((&result)->size)); rb_ary_push(data_triple, INT2NUM((&result)->drc)); free((&result)->data); return data_triple; } } return vresult; } static VALUE _wrap_get_first_track_num(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (track_t)cdio_get_first_track_num((CdIo_t const *)arg1); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_get_last_track_num(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (track_t)cdio_get_last_track_num((CdIo_t const *)arg1); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_get_track(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; lsn_t arg2 ; track_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2INT(argv[1]); result = (track_t)cdio_get_track((CdIo_t const *)arg1,arg2); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_get_track_channels(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; int result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (int)cdio_get_track_channels((CdIo_t const *)arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_track_copy_permitq___(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; bool result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (bool)cdio_get_track_copy_permit((CdIo_t const *)arg1,arg2); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } static VALUE _wrap_get_track_format(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; char *result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (char *)get_track_format((CdIo_t const *)arg1,arg2); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_track_greenq___(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; bool result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (bool)cdio_get_track_green((CdIo_t const *)arg1,arg2); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } static VALUE _wrap_get_track_last_lsn(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; lsn_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (lsn_t)cdio_get_track_last_lsn((CdIo_t const *)arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_get_track_lba(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; lba_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (lba_t)cdio_get_track_lba((CdIo_t const *)arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_get_track_lsn(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; lsn_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (lsn_t)cdio_get_track_lsn((CdIo_t const *)arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_get_track_msf(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; char *result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (char *)get_track_msf((CdIo_t const *)arg1,arg2); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_get_track_preemphasis(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; track_flag_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (track_flag_t)cdio_get_track_preemphasis((CdIo_t const *)arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_get_track_sec_count(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t arg2 ; unsigned int result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2UINT(argv[1]); result = (unsigned int)cdio_get_track_sec_count((CdIo_t const *)arg1,arg2); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_close_tray(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; driver_id_t arg2 = (driver_id_t) DRIVER_UNKNOWN ; driver_id_t *arg3 = (driver_id_t *) 0 ; driver_return_code_t result; driver_id_t temp3 ; VALUE vresult = Qnil; arg3 = &temp3; if ((argc < 1) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); if (argc > 1) { arg2 = NUM2UINT(argv[1]); } result = (driver_return_code_t)close_tray((char const *)arg1,arg2,arg3); vresult = INT2NUM(result); { VALUE o = UINT2NUM((unsigned int) (*arg3)); vresult = output_helper(vresult, o); } return vresult; } static VALUE _wrap_close(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); cdio_destroy(arg1); return Qnil; } static VALUE _wrap_driver_errmsg(int argc, VALUE *argv, VALUE self) { driver_return_code_t arg1 ; char *result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2LONG(argv[0]); result = (char *)driver_errmsg(arg1); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_eject_media(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (driver_return_code_t)eject_media(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_eject_media_drive(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) NULL ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); if (argc > 0) { arg1 = StringValuePtr(argv[0]); } result = (driver_return_code_t)cdio_eject_media_drive((char const *)arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_get_arg(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; char *arg2 ; char *result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = StringValuePtr(argv[1]); result = (char *)cdio_get_arg((CdIo_t const *)arg1,(char const (*))arg2); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_get_device(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) NULL ; char *result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); if (argc > 0) { SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); } result = (char *)cdio_get_default_device((CdIo_t const *)arg1); vresult = rb_str_new2(result); free(result); return vresult; } static VALUE _wrap_get_default_device_driver(int argc, VALUE *argv, VALUE self) { driver_id_t arg1 ; driver_id_t *arg2 = (driver_id_t *) 0 ; char *result; driver_id_t temp2 ; VALUE vresult = Qnil; arg2 = &temp2; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2UINT(argv[0]); result = (char *)get_default_device_driver(arg1,arg2); vresult = rb_str_new2(result); { VALUE o = UINT2NUM((unsigned int) (*arg2)); vresult = output_helper(vresult, o); } free(result); return vresult; } static VALUE _wrap_get_devices(int argc, VALUE *argv, VALUE self) { driver_id_t arg1 ; DeviceList_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2UINT(argv[0]); result = (DeviceList_t)cdio_get_devices(arg1); { // result is of type DeviceList_t char **p = result; if (result) { VALUE aDevices = rb_ary_new(); for (p = result; *p; p++) { rb_ary_push(aDevices, rb_str_new2(*p)); } cdio_free_device_list(result); return aDevices; } else { return Qnil; } } return vresult; } static VALUE _wrap_get_devices_ret(int argc, VALUE *argv, VALUE self) { driver_id_t arg1 ; driver_id_t *arg2 = (driver_id_t *) 0 ; DeviceList_t result; driver_id_t temp2 ; VALUE vresult = Qnil; arg2 = &temp2; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2UINT(argv[0]); result = (DeviceList_t)get_devices_ret(arg1,arg2); { // result is of type DeviceList_t char **p = result; if (result) { VALUE aDevices = rb_ary_new(); for (p = result; *p; p++) { rb_ary_push(aDevices, rb_str_new2(*p)); } cdio_free_device_list(result); return aDevices; } else { return Qnil; } } { VALUE o = UINT2NUM((unsigned int) (*arg2)); vresult = output_helper(vresult, o); } return vresult; } static VALUE _wrap_get_devices_with_cap(int argc, VALUE *argv, VALUE self) { unsigned int arg1 ; bool arg2 ; DeviceList_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = NUM2UINT(argv[0]); arg2 = RTEST(argv[1]); result = (DeviceList_t)get_devices_with_cap(arg1,arg2); { // result is of type DeviceList_t char **p = result; if (result) { VALUE aDevices = rb_ary_new(); for (p = result; *p; p++) { rb_ary_push(aDevices, rb_str_new2(*p)); } cdio_free_device_list(result); return aDevices; } else { return Qnil; } } return vresult; } static VALUE _wrap_get_devices_with_cap_ret(int argc, VALUE *argv, VALUE self) { unsigned int arg1 ; bool arg2 ; driver_id_t *arg3 = (driver_id_t *) 0 ; DeviceList_t result; driver_id_t temp3 ; VALUE vresult = Qnil; arg3 = &temp3; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = NUM2UINT(argv[0]); arg2 = RTEST(argv[1]); result = (DeviceList_t)get_devices_with_cap_ret(arg1,arg2,arg3); { // result is of type DeviceList_t char **p = result; if (result) { VALUE aDevices = rb_ary_new(); for (p = result; *p; p++) { rb_ary_push(aDevices, rb_str_new2(*p)); } cdio_free_device_list(result); return aDevices; } else { return Qnil; } } { VALUE o = UINT2NUM((unsigned int) (*arg3)); vresult = output_helper(vresult, o); } return vresult; } static VALUE _wrap_get_drive_cap__SWIG_0(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; unsigned int *arg2 = (unsigned int *) 0 ; unsigned int *arg3 = (unsigned int *) 0 ; unsigned int *arg4 = (unsigned int *) 0 ; unsigned int temp2 ; unsigned int temp3 ; unsigned int temp4 ; VALUE vresult = Qnil; arg2 = &temp2; arg3 = &temp3; arg4 = &temp4; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); cdio_get_drive_cap((CdIo_t const *)arg1,arg2,arg3,arg4); { VALUE o = UINT2NUM((unsigned int) (*arg2)); vresult = output_helper(vresult, o); } { VALUE o = UINT2NUM((unsigned int) (*arg3)); vresult = output_helper(vresult, o); } { VALUE o = UINT2NUM((unsigned int) (*arg4)); vresult = output_helper(vresult, o); } return vresult; } static VALUE _wrap_get_drive_cap__SWIG_1(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) NULL ; unsigned int *arg2 = (unsigned int *) 0 ; unsigned int *arg3 = (unsigned int *) 0 ; unsigned int *arg4 = (unsigned int *) 0 ; unsigned int temp2 ; unsigned int temp3 ; unsigned int temp4 ; VALUE vresult = Qnil; arg2 = &temp2; arg3 = &temp3; arg4 = &temp4; if ((argc < 0) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); if (argc > 0) { arg1 = StringValuePtr(argv[0]); } cdio_get_drive_cap_dev((char const *)arg1,arg2,arg3,arg4); { VALUE o = UINT2NUM((unsigned int) (*arg2)); vresult = output_helper(vresult, o); } { VALUE o = UINT2NUM((unsigned int) (*arg3)); vresult = output_helper(vresult, o); } { VALUE o = UINT2NUM((unsigned int) (*arg4)); vresult = output_helper(vresult, o); } return vresult; } static VALUE _wrap_get_drive_cap(int nargs, VALUE *args, VALUE self) { int argc; VALUE argv[1]; int ii; argc = nargs; for (ii = 0; (ii < argc) && (ii < 1); ii++) { argv[ii] = args[ii]; } if ((argc >= 0) && (argc <= 1)) { int _v; if (argc <= 0) { return _wrap_get_drive_cap__SWIG_1(nargs, args, self); } { _v = (TYPE(argv[0]) == T_STRING) ? 1 : 0; } if (_v) { return _wrap_get_drive_cap__SWIG_1(nargs, args, self); } } if (argc == 1) { int _v; { void *ptr; _v = (NIL_P(argv[0]) || (TYPE(argv[0]) == T_DATA && SWIG_ConvertPtr(argv[0], &ptr, SWIGTYPE_p_CdIo_t, 0) != -1)) ? 1 : 0; } if (_v) { return _wrap_get_drive_cap__SWIG_0(nargs, args, self); } } rb_raise(rb_eArgError, "No matching function for overloaded 'get_drive_cap'"); return Qnil; } static VALUE _wrap_get_driver_name(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; char *result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (char *)cdio_get_driver_name((CdIo_t const *)arg1); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_get_driver_id(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; driver_id_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (driver_id_t)cdio_get_driver_id((CdIo_t const *)arg1); vresult = UINT2NUM(result); return vresult; } static VALUE _wrap_get_last_session(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; lsn_t *arg2 = (lsn_t *) 0 ; driver_return_code_t result; lsn_t temp2 ; VALUE vresult = Qnil; arg2 = &temp2; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (driver_return_code_t)cdio_get_last_session(arg1,arg2); vresult = INT2NUM(result); { VALUE o = INT2NUM((int) (*arg2)); vresult = output_helper(vresult, o); } return vresult; } static VALUE _wrap_have_driver(int argc, VALUE *argv, VALUE self) { unsigned int arg1 ; int result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = NUM2UINT(argv[0]); result = (int)have_driver(arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_ATAPIq___(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; bool result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (bool)have_ATAPI(arg1); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } static VALUE _wrap_is_binfile(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; buf_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); result = (buf_t)cdio_is_binfile((char const *)arg1); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_is_cuefile(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; buf_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); result = (buf_t)cdio_is_cuefile((char const *)arg1); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_cdio_is_device(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; driver_id_t arg2 = (driver_id_t) DRIVER_UNKNOWN ; bool result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); if (argc > 1) { arg2 = NUM2UINT(argv[1]); } result = (bool)cdio_is_device((char const *)arg1,arg2); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } static VALUE _wrap_deviceq___(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; driver_id_t arg2 ; bool result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); arg1 = StringValuePtr(argv[0]); arg2 = NUM2UINT(argv[1]); result = (bool)is_device((char const *)arg1,arg2); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } static VALUE _wrap_nrgq___(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; bool result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); result = (bool)cdio_is_nrg((char const *)arg1); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } static VALUE _wrap_tocfileq___(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; bool result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); result = (bool)cdio_is_tocfile((char const *)arg1); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } static VALUE _wrap_get_media_changed(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; int result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (int)cdio_get_media_changed(arg1); vresult = INT2NUM(result); return vresult; } swig_class cHWInfo_t; static VALUE _wrap_HWInfo_t_hw_set(int argc, VALUE *argv, VALUE self) { HWInfo_t *arg1 = (HWInfo_t *) 0 ; cdio_hwinfo_t arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_HWInfo_t, 0); { cdio_hwinfo_t * ptr; SWIG_ConvertPtr(argv[0], (void **) &ptr, SWIGTYPE_p_cdio_hwinfo_t, 0); if (ptr) arg2 = *ptr; } if (arg1) (arg1)->hw = arg2; return Qnil; } static VALUE _wrap_HWInfo_t_hw_get(int argc, VALUE *argv, VALUE self) { HWInfo_t *arg1 = (HWInfo_t *) 0 ; cdio_hwinfo_t result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_HWInfo_t, 0); result = ((arg1)->hw); { cdio_hwinfo_t * resultptr; resultptr = (cdio_hwinfo_t *) malloc(sizeof(cdio_hwinfo_t)); memmove(resultptr, &result, sizeof(cdio_hwinfo_t)); vresult = SWIG_NewPointerObj((void *) resultptr, SWIGTYPE_p_cdio_hwinfo_t, 1); } return vresult; } static VALUE _wrap_HWInfo_t_result_set(int argc, VALUE *argv, VALUE self) { HWInfo_t *arg1 = (HWInfo_t *) 0 ; bool arg2 ; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_HWInfo_t, 0); arg2 = RTEST(argv[0]); if (arg1) (arg1)->result = arg2; return Qnil; } static VALUE _wrap_HWInfo_t_result_get(int argc, VALUE *argv, VALUE self) { HWInfo_t *arg1 = (HWInfo_t *) 0 ; bool result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_ConvertPtr(self, (void **) &arg1, SWIGTYPE_p_HWInfo_t, 0); result = (bool) ((arg1)->result); vresult = (result != 0) ? Qtrue : Qfalse; return vresult; } #ifdef HAVE_RB_DEFINE_ALLOC_FUNC static VALUE _wrap_HWInfo_t_allocate(VALUE self) { #else static VALUE _wrap_HWInfo_t_allocate(int argc, VALUE *argv, VALUE self) { #endif VALUE vresult = SWIG_NewClassInstance(self, SWIGTYPE_p_HWInfo_t); #ifndef HAVE_RB_DEFINE_ALLOC_FUNC rb_obj_call_init(vresult, argc, argv); #endif return vresult; } static VALUE _wrap_new_HWInfo_t(int argc, VALUE *argv, VALUE self) { HWInfo_t *result; if ((argc < 0) || (argc > 0)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); result = (HWInfo_t *)(HWInfo_t *) calloc(1, sizeof(HWInfo_t)); DATA_PTR(self) = result; return self; } static void free_HWInfo_t(HWInfo_t *arg1) { free((char *) arg1); } static VALUE _wrap_get_hwinfo(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; HWInfo_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = get_hwinfo((CdIo_t const *)arg1); { // result is of type HWInfo_t VALUE ret; if ((&result)->result == 0) return Qnil; else { ret = rb_hash_new(); rb_hash_aset(ret, rb_str_new2("vendor"), rb_str_new2((&result)->hw.psz_vendor)); rb_hash_aset(ret, rb_str_new2("model"), rb_str_new2((&result)->hw.psz_model)); rb_hash_aset(ret, rb_str_new2("revision"), rb_str_new2((&result)->hw.psz_revision)); return ret; } } return vresult; } static VALUE _wrap_set_blocksize(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; int arg2 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2INT(argv[1]); result = (driver_return_code_t)cdio_set_blocksize((CdIo_t const *)arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_set_speed(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; int arg2 ; driver_return_code_t result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); arg2 = NUM2INT(argv[1]); result = (driver_return_code_t)cdio_set_speed((CdIo_t const *)arg1,arg2); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_open_cd(int argc, VALUE *argv, VALUE self) { char *arg1 = (char *) 0 ; driver_id_t arg2 = (driver_id_t) DRIVER_UNKNOWN ; char *arg3 = (char *) NULL ; CdIo_t *result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 3)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); arg1 = StringValuePtr(argv[0]); if (argc > 1) { arg2 = NUM2UINT(argv[1]); } if (argc > 2) { arg3 = StringValuePtr(argv[2]); } result = (CdIo_t *)open_cd((char const *)arg1,arg2,(char const *)arg3); vresult = SWIG_NewPointerObj((void *) result, SWIGTYPE_p_CdIo_t,0); return vresult; } static VALUE _wrap_get_disc_last_lsn(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; lsn_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (lsn_t)cdio_get_disc_last_lsn((CdIo_t const *)arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_get_disc_mode(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; char *result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (char *)get_disc_mode(arg1); vresult = rb_str_new2(result); return vresult; } static VALUE _wrap_get_joliet_level(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; int result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (int)cdio_get_joliet_level((CdIo_t const *)arg1); vresult = INT2NUM(result); return vresult; } static VALUE _wrap_get_mcn(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; char *result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (char *)cdio_get_mcn((CdIo_t const *)arg1); vresult = rb_str_new2(result); free(result); return vresult; } static VALUE _wrap_get_num_tracks(int argc, VALUE *argv, VALUE self) { CdIo_t *arg1 = (CdIo_t *) 0 ; track_t result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_ConvertPtr(argv[0], (void **) &arg1, SWIGTYPE_p_CdIo_t, 0); result = (track_t)cdio_get_num_tracks((CdIo_t const *)arg1); vresult = UINT2NUM(result); return vresult; } /* -------- TYPE CONVERSION AND EQUIVALENCE RULES (BEGIN) -------- */ static swig_type_info _swigt__p_Buf_triple_t = {"_p_Buf_triple_t", "Buf_triple_t *", 0, 0, 0}; static swig_type_info _swigt__p_CdIo_t = {"_p_CdIo_t", "CdIo_t *", 0, 0, 0}; static swig_type_info _swigt__p_HWInfo_t = {"_p_HWInfo_t", "HWInfo_t *", 0, 0, 0}; static swig_type_info _swigt__p_cdio_hwinfo_t = {"_p_cdio_hwinfo_t", "cdio_hwinfo_t *", 0, 0, 0}; static swig_type_info _swigt__p_cdio_read_mode_t = {"_p_cdio_read_mode_t", "enum cdio_read_mode_t *|cdio_read_mode_t *", 0, 0, 0}; static swig_type_info _swigt__p_char = {"_p_char", "char *", 0, 0, 0}; static swig_type_info _swigt__p_int = {"_p_int", "int *|lsn_t *", 0, 0, 0}; static swig_type_info _swigt__p_long = {"_p_long", "long *|ssize_t *", 0, 0, 0}; static swig_type_info _swigt__p_off_t = {"_p_off_t", "off_t *", 0, 0, 0}; static swig_type_info _swigt__p_unsigned_int = {"_p_unsigned_int", "unsigned int *", 0, 0, 0}; static swig_type_info _swigt__p_unsigned_long = {"_p_unsigned_long", "unsigned long *|VALUE *", 0, 0, 0}; static swig_type_info *swig_type_initial[] = { &_swigt__p_Buf_triple_t, &_swigt__p_CdIo_t, &_swigt__p_HWInfo_t, &_swigt__p_cdio_hwinfo_t, &_swigt__p_cdio_read_mode_t, &_swigt__p_char, &_swigt__p_int, &_swigt__p_long, &_swigt__p_off_t, &_swigt__p_unsigned_int, &_swigt__p_unsigned_long, }; static swig_cast_info _swigc__p_Buf_triple_t[] = { {&_swigt__p_Buf_triple_t, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_CdIo_t[] = { {&_swigt__p_CdIo_t, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_HWInfo_t[] = { {&_swigt__p_HWInfo_t, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_cdio_hwinfo_t[] = { {&_swigt__p_cdio_hwinfo_t, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_cdio_read_mode_t[] = { {&_swigt__p_cdio_read_mode_t, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_char[] = { {&_swigt__p_char, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_int[] = { {&_swigt__p_int, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_long[] = { {&_swigt__p_long, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_off_t[] = { {&_swigt__p_off_t, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_unsigned_int[] = { {&_swigt__p_unsigned_int, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info _swigc__p_unsigned_long[] = { {&_swigt__p_unsigned_long, 0, 0, 0},{0, 0, 0, 0}}; static swig_cast_info *swig_cast_initial[] = { _swigc__p_Buf_triple_t, _swigc__p_CdIo_t, _swigc__p_HWInfo_t, _swigc__p_cdio_hwinfo_t, _swigc__p_cdio_read_mode_t, _swigc__p_char, _swigc__p_int, _swigc__p_long, _swigc__p_off_t, _swigc__p_unsigned_int, _swigc__p_unsigned_long, }; /* -------- TYPE CONVERSION AND EQUIVALENCE RULES (END) -------- */ /************************************************************************* * Type initialization: * This problem is tough by the requirement that no dynamic * memory is used. Also, since swig_type_info structures store pointers to * swig_cast_info structures and swig_cast_info structures store pointers back * to swig_type_info structures, we need some lookup code at initialization. * The idea is that swig generates all the structures that are needed. * The runtime then collects these partially filled structures. * The SWIG_InitializeModule function takes these initial arrays out of * swig_module, and does all the lookup, filling in the swig_module.types * array with the correct data and linking the correct swig_cast_info * structures together. * The generated swig_type_info structures are assigned staticly to an initial * array. We just loop though that array, and handle each type individually. * First we lookup if this type has been already loaded, and if so, use the * loaded structure instead of the generated one. Then we have to fill in the * cast linked list. The cast data is initially stored in something like a * two-dimensional array. Each row corresponds to a type (there are the same * number of rows as there are in the swig_type_initial array). Each entry in * a column is one of the swig_cast_info structures for that type. * The cast_initial array is actually an array of arrays, because each row has * a variable number of columns. So to actually build the cast linked list, * we find the array of casts associated with the type, and loop through it * adding the casts to the list. The one last trick we need to do is making * sure the type pointer in the swig_cast_info struct is correct. * First off, we lookup the cast->type name to see if it is already loaded. * There are three cases to handle: * 1) If the cast->type has already been loaded AND the type we are adding * casting info to has not been loaded (it is in this module), THEN we * replace the cast->type pointer with the type pointer that has already * been loaded. * 2) If BOTH types (the one we are adding casting info to, and the * cast->type) are loaded, THEN the cast info has already been loaded by * the previous module so we just ignore it. * 3) Finally, if cast->type has not already been loaded, then we add that * swig_cast_info to the linked list (because the cast->type) pointer will * be correct. **/ #ifdef __cplusplus extern "C" { #endif SWIGRUNTIME void SWIG_InitializeModule(void *clientdata) { swig_type_info *type, *ret; swig_cast_info *cast; size_t i; swig_module_info *module_head; static int init_run = 0; clientdata = clientdata; if (init_run) return; init_run = 1; /* Initialize the swig_module */ swig_module.type_initial = swig_type_initial; swig_module.cast_initial = swig_cast_initial; /* Try and load any already created modules */ module_head = SWIG_GetModule(clientdata); if (module_head) { swig_module.next = module_head->next; module_head->next = &swig_module; } else { /* This is the first module loaded */ swig_module.next = &swig_module; SWIG_SetModule(clientdata, &swig_module); } /* Now work on filling in swig_module.types */ for (i = 0; i < swig_module.size; ++i) { type = 0; /* if there is another module already loaded */ if (swig_module.next != &swig_module) { type = SWIG_MangledTypeQueryModule(swig_module.next, &swig_module, swig_module.type_initial[i]->name); } if (type) { /* Overwrite clientdata field */ if (swig_module.type_initial[i]->clientdata) type->clientdata = swig_module.type_initial[i]->clientdata; } else { type = swig_module.type_initial[i]; } /* Insert casting types */ cast = swig_module.cast_initial[i]; while (cast->type) { /* Don't need to add information already in the list */ ret = 0; if (swig_module.next != &swig_module) { ret = SWIG_MangledTypeQueryModule(swig_module.next, &swig_module, cast->type->name); } if (ret && type == swig_module.type_initial[i]) { cast->type = ret; ret = 0; } if (!ret) { if (type->cast) { type->cast->prev = cast; cast->next = type->cast; } type->cast = cast; } cast++; } /* Set entry in modules->types array equal to the type */ swig_module.types[i] = type; } swig_module.types[i] = 0; } /* This function will propagate the clientdata field of type to * any new swig_type_info structures that have been added into the list * of equivalent types. It is like calling * SWIG_TypeClientData(type, clientdata) a second time. */ SWIGRUNTIME void SWIG_PropagateClientData(void) { size_t i; swig_cast_info *equiv; static int init_run = 0; if (init_run) return; init_run = 1; for (i = 0; i < swig_module.size; i++) { if (swig_module.types[i]->clientdata) { equiv = swig_module.types[i]->cast; while (equiv) { if (!equiv->converter) { if (equiv->type && !equiv->type->clientdata) SWIG_TypeClientData(equiv->type, swig_module.types[i]->clientdata); } equiv = equiv->next; } } } } #ifdef __cplusplus } #endif #ifdef __cplusplus extern "C" #endif SWIGEXPORT void Init_rubycdio(void) { size_t i; SWIG_InitRuntime(); mRubycdio = rb_define_module("Rubycdio"); SWIG_InitializeModule(0); for (i = 0; i < swig_module.size; i++) { SWIG_define_class(swig_module.types[i]); } SWIG_RubyInitializeTrackings(); rb_define_const(mRubycdio,"CDIO_READ_MODE_AUDIO", INT2NUM(CDIO_READ_MODE_AUDIO)); rb_define_const(mRubycdio,"CDIO_READ_MODE_M1F1", INT2NUM(CDIO_READ_MODE_M1F1)); rb_define_const(mRubycdio,"CDIO_READ_MODE_M1F2", INT2NUM(CDIO_READ_MODE_M1F2)); rb_define_const(mRubycdio,"CDIO_READ_MODE_M2F1", INT2NUM(CDIO_READ_MODE_M2F1)); rb_define_const(mRubycdio,"CDIO_READ_MODE_M2F2", INT2NUM(CDIO_READ_MODE_M2F2)); rb_define_module_function(mRubycdio, "cdio_read_sectors", _wrap_cdio_read_sectors, -1); rb_define_module_function(mRubycdio, "cdio_eject_media_drive", _wrap_cdio_eject_media_drive, -1); rb_define_const(mRubycdio,"VERSION_NUM", INT2NUM(LIBCDIO_VERSION_NUM)); rb_define_const(mRubycdio,"INVALID_LBA", INT2NUM(CDIO_INVALID_LBA)); rb_define_const(mRubycdio,"INVALID_LSN", INT2NUM(CDIO_INVALID_LSN)); rb_define_const(mRubycdio,"CD_FRAMESIZE", INT2NUM(CDIO_CD_FRAMESIZE)); rb_define_const(mRubycdio,"CD_FRAMESIZE_RAW", INT2NUM(CDIO_CD_FRAMESIZE_RAW)); rb_define_const(mRubycdio,"ISO_BLOCKSIZE", INT2NUM(CDIO_CD_FRAMESIZE)); rb_define_const(mRubycdio,"M2F2_SECTOR_SIZE", INT2NUM(M2F2_SECTOR_SIZE)); rb_define_const(mRubycdio,"M2RAW_SECTOR_SIZE", INT2NUM(M2RAW_SECTOR_SIZE)); rb_define_module_function(mRubycdio, "audio_pause", _wrap_audio_pause, -1); rb_define_module_function(mRubycdio, "audio_play_lsn", _wrap_audio_play_lsn, -1); rb_define_module_function(mRubycdio, "audio_resume", _wrap_audio_resume, -1); rb_define_module_function(mRubycdio, "audio_stop", _wrap_audio_stop, -1); rb_define_const(mRubycdio,"READ_MODE_AUDIO", INT2NUM(CDIO_READ_MODE_AUDIO)); rb_define_const(mRubycdio,"READ_MODE_M1F1", INT2NUM(CDIO_READ_MODE_M1F1)); rb_define_const(mRubycdio,"READ_MODE_M1F2", INT2NUM(CDIO_READ_MODE_M1F2)); rb_define_const(mRubycdio,"READ_MODE_M2F1", INT2NUM(CDIO_READ_MODE_M2F1)); rb_define_const(mRubycdio,"READ_MODE_M2F2", INT2NUM(CDIO_READ_MODE_M2F2)); cBuf_triple_t.klass = rb_define_class_under(mRubycdio, "Buf_triple_t", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_Buf_triple_t, (void *) &cBuf_triple_t); rb_define_alloc_func(cBuf_triple_t.klass, _wrap_Buf_triple_t_allocate); rb_define_method(cBuf_triple_t.klass, "initialize", _wrap_new_Buf_triple_t, -1); rb_define_method(cBuf_triple_t.klass, "data=", _wrap_Buf_triple_t_data_set, -1); rb_define_method(cBuf_triple_t.klass, "data", _wrap_Buf_triple_t_data_get, -1); rb_define_method(cBuf_triple_t.klass, "size=", _wrap_Buf_triple_t_size_set, -1); rb_define_method(cBuf_triple_t.klass, "size", _wrap_Buf_triple_t_size_get, -1); rb_define_method(cBuf_triple_t.klass, "drc=", _wrap_Buf_triple_t_drc_set, -1); rb_define_method(cBuf_triple_t.klass, "drc", _wrap_Buf_triple_t_drc_get, -1); cBuf_triple_t.mark = 0; cBuf_triple_t.destroy = (void (*)(void *)) free_Buf_triple_t; rb_define_module_function(mRubycdio, "lseek", _wrap_lseek, -1); rb_define_module_function(mRubycdio, "read_cd", _wrap_read_cd, -1); rb_define_module_function(mRubycdio, "read_sectors", _wrap_read_sectors, -1); rb_define_module_function(mRubycdio, "read_data_bytes", _wrap_read_data_bytes, -1); rb_define_const(mRubycdio,"TRACK_FORMAT_AUDIO", INT2NUM(TRACK_FORMAT_AUDIO)); rb_define_const(mRubycdio,"TRACK_FORMAT_CDI", INT2NUM(TRACK_FORMAT_CDI)); rb_define_const(mRubycdio,"TRACK_FORMAT_XA", INT2NUM(TRACK_FORMAT_XA)); rb_define_const(mRubycdio,"TRACK_FORMAT_DATA", INT2NUM(TRACK_FORMAT_DATA)); rb_define_const(mRubycdio,"TRACK_FORMAT_PSX", INT2NUM(TRACK_FORMAT_PSX)); rb_define_const(mRubycdio,"CDIO_TRACK_FLAG_FALSE", INT2NUM(CDIO_TRACK_FLAG_FALSE)); rb_define_const(mRubycdio,"CDIO_TRACK_FLAG_TRUE", INT2NUM(CDIO_TRACK_FLAG_TRUE)); rb_define_const(mRubycdio,"CDIO_TRACK_FLAG_ERROR", INT2NUM(CDIO_TRACK_FLAG_ERROR)); rb_define_const(mRubycdio,"CDIO_TRACK_FLAG_UNKNOWN", INT2NUM(CDIO_TRACK_FLAG_UNKNOWN)); rb_define_const(mRubycdio,"CDIO_CDROM_LBA", INT2NUM(CDIO_CDROM_LBA)); rb_define_const(mRubycdio,"CDIO_CDROM_MSF", INT2NUM(CDIO_CDROM_MSF)); rb_define_const(mRubycdio,"CDIO_CDROM_DATA_TRACK", INT2NUM(CDIO_CDROM_DATA_TRACK)); rb_define_const(mRubycdio,"CDIO_CDROM_CDI_TRACK", INT2NUM(CDIO_CDROM_CDI_TRACK)); rb_define_const(mRubycdio,"CDIO_CDROM_XA_TRACK", INT2NUM(CDIO_CDROM_XA_TRACK)); rb_define_const(mRubycdio,"AUDIO", INT2NUM(AUDIO)); rb_define_const(mRubycdio,"MODE1", INT2NUM(MODE1)); rb_define_const(mRubycdio,"MODE1_RAW", INT2NUM(MODE1_RAW)); rb_define_const(mRubycdio,"MODE2", INT2NUM(MODE2)); rb_define_const(mRubycdio,"MODE2_FORM1", INT2NUM(MODE2_FORM1)); rb_define_const(mRubycdio,"MODE2_FORM2", INT2NUM(MODE2_FORM2)); rb_define_const(mRubycdio,"MODE2_FORM_MIX", INT2NUM(MODE2_FORM_MIX)); rb_define_const(mRubycdio,"MODE2_RAW", INT2NUM(MODE2_RAW)); rb_define_const(mRubycdio,"INVALID_TRACK", INT2NUM(CDIO_INVALID_TRACK)); rb_define_const(mRubycdio,"CDROM_LEADOUT_TRACK", INT2NUM(0xAA)); rb_define_module_function(mRubycdio, "get_first_track_num", _wrap_get_first_track_num, -1); rb_define_module_function(mRubycdio, "get_last_track_num", _wrap_get_last_track_num, -1); rb_define_module_function(mRubycdio, "get_track", _wrap_get_track, -1); rb_define_module_function(mRubycdio, "get_track_channels", _wrap_get_track_channels, -1); rb_define_module_function(mRubycdio, "track_copy_permit?", _wrap_track_copy_permitq___, -1); rb_define_module_function(mRubycdio, "get_track_format", _wrap_get_track_format, -1); rb_define_module_function(mRubycdio, "track_green?", _wrap_track_greenq___, -1); rb_define_module_function(mRubycdio, "get_track_last_lsn", _wrap_get_track_last_lsn, -1); rb_define_module_function(mRubycdio, "get_track_lba", _wrap_get_track_lba, -1); rb_define_module_function(mRubycdio, "get_track_lsn", _wrap_get_track_lsn, -1); rb_define_module_function(mRubycdio, "get_track_msf", _wrap_get_track_msf, -1); rb_define_module_function(mRubycdio, "get_track_preemphasis", _wrap_get_track_preemphasis, -1); rb_define_module_function(mRubycdio, "get_track_sec_count", _wrap_get_track_sec_count, -1); rb_define_const(mRubycdio,"DRIVE_CAP_ERROR", INT2NUM(CDIO_DRIVE_CAP_ERROR)); rb_define_const(mRubycdio,"DRIVE_CAP_UNKNOWN", INT2NUM(CDIO_DRIVE_CAP_UNKNOWN)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_CLOSE_TRAY", INT2NUM(CDIO_DRIVE_CAP_MISC_CLOSE_TRAY)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_EJECT", INT2NUM(CDIO_DRIVE_CAP_MISC_EJECT)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_LOCK", INT2NUM(CDIO_DRIVE_CAP_MISC_LOCK)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_SELECT_SPEED", INT2NUM(CDIO_DRIVE_CAP_MISC_SELECT_SPEED)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_SELECT_DISC", INT2NUM(CDIO_DRIVE_CAP_MISC_SELECT_DISC)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_MULTI_SESSION", INT2NUM(CDIO_DRIVE_CAP_MISC_MULTI_SESSION)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_MEDIA_CHANGED", INT2NUM(CDIO_DRIVE_CAP_MISC_MEDIA_CHANGED)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_RESET", INT2NUM(CDIO_DRIVE_CAP_MISC_RESET)); rb_define_const(mRubycdio,"DRIVE_CAP_MISC_FILE", INT2NUM(CDIO_DRIVE_CAP_MISC_FILE)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_AUDIO", INT2NUM(CDIO_DRIVE_CAP_READ_AUDIO)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_CD_DA", INT2NUM(CDIO_DRIVE_CAP_READ_CD_DA)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_CD_G", INT2NUM(CDIO_DRIVE_CAP_READ_CD_G)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_CD_R", INT2NUM(CDIO_DRIVE_CAP_READ_CD_R)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_CD_RW", INT2NUM(CDIO_DRIVE_CAP_READ_CD_RW)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_DVD_R", INT2NUM(CDIO_DRIVE_CAP_READ_DVD_R)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_DVD_PR", INT2NUM(CDIO_DRIVE_CAP_READ_DVD_PR)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_DVD_RAM", INT2NUM(CDIO_DRIVE_CAP_READ_DVD_RAM)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_DVD_ROM", INT2NUM(CDIO_DRIVE_CAP_READ_DVD_ROM)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_DVD_RW", INT2NUM(CDIO_DRIVE_CAP_READ_DVD_RW)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_DVD_RPW", INT2NUM(CDIO_DRIVE_CAP_READ_DVD_RPW)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_C2_ERRS", INT2NUM(CDIO_DRIVE_CAP_READ_C2_ERRS)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_MODE2_FORM1", INT2NUM(CDIO_DRIVE_CAP_READ_MODE2_FORM1)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_MODE2_FORM2", INT2NUM(CDIO_DRIVE_CAP_READ_MODE2_FORM2)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_MCN", INT2NUM(CDIO_DRIVE_CAP_READ_MCN)); rb_define_const(mRubycdio,"DRIVE_CAP_READ_ISRC", INT2NUM(CDIO_DRIVE_CAP_READ_ISRC)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_CD_R", INT2NUM(CDIO_DRIVE_CAP_WRITE_CD_R)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_CD_RW", INT2NUM(CDIO_DRIVE_CAP_WRITE_CD_RW)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_DVD_R", INT2NUM(CDIO_DRIVE_CAP_WRITE_DVD_R)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_DVD_PR", INT2NUM(CDIO_DRIVE_CAP_WRITE_DVD_PR)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_DVD_RAM", INT2NUM(CDIO_DRIVE_CAP_WRITE_DVD_RAM)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_DVD_RW", INT2NUM(CDIO_DRIVE_CAP_WRITE_DVD_RW)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_DVD_RPW", INT2NUM(CDIO_DRIVE_CAP_WRITE_DVD_RPW)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_MT_RAINIER", INT2NUM(CDIO_DRIVE_CAP_WRITE_MT_RAINIER)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_BURN_PROOF", INT2NUM(CDIO_DRIVE_CAP_WRITE_BURN_PROOF)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_CD", INT2NUM(CDIO_DRIVE_CAP_WRITE_CD)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE_DVD", INT2NUM(CDIO_DRIVE_CAP_WRITE_DVD)); rb_define_const(mRubycdio,"DRIVE_CAP_WRITE", INT2NUM(CDIO_DRIVE_CAP_WRITE)); rb_define_const(mRubycdio,"MMC_HW_VENDOR_LEN", INT2NUM(CDIO_MMC_HW_VENDOR_LEN)); rb_define_const(mRubycdio,"MMC_HW_MODEL_LEN", INT2NUM(CDIO_MMC_HW_MODEL_LEN)); rb_define_const(mRubycdio,"MMC_HW_REVISION_LEN", INT2NUM(CDIO_MMC_HW_REVISION_LEN)); rb_define_const(mRubycdio,"SRC_IS_DISK_IMAGE_MASK", INT2NUM(CDIO_SRC_IS_DISK_IMAGE_MASK)); rb_define_const(mRubycdio,"SRC_IS_DEVICE_MASK", INT2NUM(CDIO_SRC_IS_DEVICE_MASK)); rb_define_const(mRubycdio,"SRC_IS_SCSI_MASK", INT2NUM(CDIO_SRC_IS_SCSI_MASK)); rb_define_const(mRubycdio,"SRC_IS_NATIVE_MASK", INT2NUM(CDIO_SRC_IS_NATIVE_MASK)); rb_define_const(mRubycdio,"DRIVER_UNKNOWN", INT2NUM(DRIVER_UNKNOWN)); rb_define_const(mRubycdio,"DRIVER_AIX", INT2NUM(DRIVER_AIX)); rb_define_const(mRubycdio,"DRIVER_BSDI", INT2NUM(DRIVER_BSDI)); rb_define_const(mRubycdio,"DRIVER_FREEBSD", INT2NUM(DRIVER_FREEBSD)); rb_define_const(mRubycdio,"DRIVER_LINUX", INT2NUM(DRIVER_LINUX)); rb_define_const(mRubycdio,"DRIVER_SOLARIS", INT2NUM(DRIVER_SOLARIS)); rb_define_const(mRubycdio,"DRIVER_OSX", INT2NUM(DRIVER_OSX)); rb_define_const(mRubycdio,"DRIVER_WIN32", INT2NUM(DRIVER_WIN32)); rb_define_const(mRubycdio,"DRIVER_CDRDAO", INT2NUM(DRIVER_CDRDAO)); rb_define_const(mRubycdio,"DRIVER_BINCUE", INT2NUM(DRIVER_BINCUE)); rb_define_const(mRubycdio,"DRIVER_NRG", INT2NUM(DRIVER_NRG)); rb_define_const(mRubycdio,"DRIVER_DEVICE", INT2NUM(DRIVER_DEVICE)); rb_define_const(mRubycdio,"MIN_DRIVER", INT2NUM(CDIO_MIN_DRIVER)); rb_define_const(mRubycdio,"MIN_DEVICE_DRIVER", INT2NUM(CDIO_MIN_DEVICE_DRIVER)); rb_define_const(mRubycdio,"MAX_DRIVER", INT2NUM(CDIO_MAX_DRIVER)); rb_define_const(mRubycdio,"MAX_DEVICE_DRIVER", INT2NUM(CDIO_MAX_DEVICE_DRIVER)); rb_define_const(mRubycdio,"DRIVER_OP_SUCCESS", INT2NUM(DRIVER_OP_SUCCESS)); rb_define_const(mRubycdio,"DRIVER_OP_ERROR", INT2NUM(DRIVER_OP_ERROR)); rb_define_const(mRubycdio,"DRIVER_OP_UNSUPPORTED", INT2NUM(DRIVER_OP_UNSUPPORTED)); rb_define_const(mRubycdio,"DRIVER_OP_UNINIT", INT2NUM(DRIVER_OP_UNINIT)); rb_define_const(mRubycdio,"DRIVER_OP_NOT_PERMITTED", INT2NUM(DRIVER_OP_NOT_PERMITTED)); rb_define_const(mRubycdio,"DRIVER_OP_BAD_PARAMETER", INT2NUM(DRIVER_OP_BAD_PARAMETER)); rb_define_const(mRubycdio,"DRIVER_OP_BAD_POINTER", INT2NUM(DRIVER_OP_BAD_POINTER)); rb_define_const(mRubycdio,"DRIVER_OP_NO_DRIVER", INT2NUM(DRIVER_OP_NO_DRIVER)); rb_define_const(mRubycdio,"FS_AUDIO", UINT2NUM(CDIO_FS_AUDIO)); rb_define_const(mRubycdio,"FS_HIGH_SIERRA", UINT2NUM(CDIO_FS_HIGH_SIERRA)); rb_define_const(mRubycdio,"FS_ISO_9660", UINT2NUM(CDIO_FS_ISO_9660)); rb_define_const(mRubycdio,"FS_INTERACTIVE", UINT2NUM(CDIO_FS_INTERACTIVE)); rb_define_const(mRubycdio,"FS_HFS", UINT2NUM(CDIO_FS_HFS)); rb_define_const(mRubycdio,"FS_UFS", UINT2NUM(CDIO_FS_UFS)); rb_define_const(mRubycdio,"FS_EXT2", UINT2NUM(CDIO_FS_EXT2)); rb_define_const(mRubycdio,"FS_ISO_HFS", UINT2NUM(CDIO_FS_ISO_HFS)); rb_define_const(mRubycdio,"FS_ISO_9660_INTERACTIVE", UINT2NUM(CDIO_FS_ISO_9660_INTERACTIVE)); rb_define_const(mRubycdio,"FS_3DO", UINT2NUM(CDIO_FS_3DO)); rb_define_const(mRubycdio,"FS_XISO", UINT2NUM(CDIO_FS_XISO)); rb_define_const(mRubycdio,"FS_UDFX", UINT2NUM(CDIO_FS_UDFX)); rb_define_const(mRubycdio,"FS_UDF", UINT2NUM(CDIO_FS_UDF)); rb_define_const(mRubycdio,"FS_ISO_UDF", UINT2NUM(CDIO_FS_ISO_UDF)); rb_define_const(mRubycdio,"FS_ANAL_XA", UINT2NUM(CDIO_FS_ANAL_XA)); rb_define_const(mRubycdio,"FS_ANAL_MULTISESSION", UINT2NUM(CDIO_FS_ANAL_MULTISESSION)); rb_define_const(mRubycdio,"FS_ANAL_PHOTO_CD", UINT2NUM(CDIO_FS_ANAL_PHOTO_CD)); rb_define_const(mRubycdio,"FS_ANAL_HIDDEN_TRACK", UINT2NUM(CDIO_FS_ANAL_HIDDEN_TRACK)); rb_define_const(mRubycdio,"FS_ANAL_CDTV", UINT2NUM(CDIO_FS_ANAL_CDTV)); rb_define_const(mRubycdio,"FS_ANAL_BOOTABLE", UINT2NUM(CDIO_FS_ANAL_BOOTABLE)); rb_define_const(mRubycdio,"FS_ANAL_VIDEOCD", UINT2NUM(CDIO_FS_ANAL_VIDEOCD)); rb_define_const(mRubycdio,"FS_ANAL_ROCKRIDGE", UINT2NUM(CDIO_FS_ANAL_ROCKRIDGE)); rb_define_const(mRubycdio,"FS_ANAL_JOLIET", UINT2NUM(CDIO_FS_ANAL_JOLIET)); rb_define_const(mRubycdio,"FS_ANAL_SVCD", UINT2NUM(CDIO_FS_ANAL_SVCD)); rb_define_const(mRubycdio,"FS_ANAL_CVD", UINT2NUM(CDIO_FS_ANAL_CVD)); rb_define_const(mRubycdio,"FS_ANAL_XISO", UINT2NUM(CDIO_FS_ANAL_XISO)); rb_define_const(mRubycdio,"FS_MATCH_ALL", UINT2NUM(CDIO_FS_MATCH_ALL)); rb_define_const(mRubycdio,"FS_UNKNOWN", UINT2NUM(CDIO_FS_UNKNOWN)); rb_define_module_function(mRubycdio, "close_tray", _wrap_close_tray, -1); rb_define_module_function(mRubycdio, "close", _wrap_close, -1); rb_define_module_function(mRubycdio, "driver_errmsg", _wrap_driver_errmsg, -1); rb_define_module_function(mRubycdio, "eject_media", _wrap_eject_media, -1); rb_define_module_function(mRubycdio, "eject_media_drive", _wrap_eject_media_drive, -1); rb_define_module_function(mRubycdio, "get_arg", _wrap_get_arg, -1); rb_define_module_function(mRubycdio, "get_device", _wrap_get_device, -1); rb_define_module_function(mRubycdio, "get_default_device_driver", _wrap_get_default_device_driver, -1); rb_define_module_function(mRubycdio, "get_devices", _wrap_get_devices, -1); rb_define_module_function(mRubycdio, "get_devices_ret", _wrap_get_devices_ret, -1); rb_define_module_function(mRubycdio, "get_devices_with_cap", _wrap_get_devices_with_cap, -1); rb_define_module_function(mRubycdio, "get_devices_with_cap_ret", _wrap_get_devices_with_cap_ret, -1); rb_define_module_function(mRubycdio, "get_drive_cap", _wrap_get_drive_cap, -1); rb_define_module_function(mRubycdio, "get_driver_name", _wrap_get_driver_name, -1); rb_define_module_function(mRubycdio, "get_driver_id", _wrap_get_driver_id, -1); rb_define_module_function(mRubycdio, "get_last_session", _wrap_get_last_session, -1); rb_define_module_function(mRubycdio, "have_driver", _wrap_have_driver, -1); rb_define_module_function(mRubycdio, "ATAPI?", _wrap_ATAPIq___, -1); rb_define_module_function(mRubycdio, "is_binfile", _wrap_is_binfile, -1); rb_define_module_function(mRubycdio, "is_cuefile", _wrap_is_cuefile, -1); rb_define_module_function(mRubycdio, "cdio_is_device", _wrap_cdio_is_device, -1); rb_define_module_function(mRubycdio, "device?", _wrap_deviceq___, -1); rb_define_module_function(mRubycdio, "nrg?", _wrap_nrgq___, -1); rb_define_module_function(mRubycdio, "tocfile?", _wrap_tocfileq___, -1); rb_define_module_function(mRubycdio, "get_media_changed", _wrap_get_media_changed, -1); cHWInfo_t.klass = rb_define_class_under(mRubycdio, "HWInfo_t", rb_cObject); SWIG_TypeClientData(SWIGTYPE_p_HWInfo_t, (void *) &cHWInfo_t); rb_define_alloc_func(cHWInfo_t.klass, _wrap_HWInfo_t_allocate); rb_define_method(cHWInfo_t.klass, "initialize", _wrap_new_HWInfo_t, -1); rb_define_method(cHWInfo_t.klass, "hw=", _wrap_HWInfo_t_hw_set, -1); rb_define_method(cHWInfo_t.klass, "hw", _wrap_HWInfo_t_hw_get, -1); rb_define_method(cHWInfo_t.klass, "result=", _wrap_HWInfo_t_result_set, -1); rb_define_method(cHWInfo_t.klass, "result", _wrap_HWInfo_t_result_get, -1); cHWInfo_t.mark = 0; cHWInfo_t.destroy = (void (*)(void *)) free_HWInfo_t; rb_define_module_function(mRubycdio, "get_hwinfo", _wrap_get_hwinfo, -1); rb_define_module_function(mRubycdio, "set_blocksize", _wrap_set_blocksize, -1); rb_define_module_function(mRubycdio, "set_speed", _wrap_set_speed, -1); rb_define_module_function(mRubycdio, "open_cd", _wrap_open_cd, -1); rb_define_const(mRubycdio,"DISC_MODE_CD_DA", INT2NUM(CDIO_DISC_MODE_CD_DA)); rb_define_const(mRubycdio,"DISC_MODE_CD_DATA", INT2NUM(CDIO_DISC_MODE_CD_DATA)); rb_define_const(mRubycdio,"DISC_MODE_CD_XA", INT2NUM(CDIO_DISC_MODE_CD_XA)); rb_define_const(mRubycdio,"DISC_MODE_CD_MIXED", INT2NUM(CDIO_DISC_MODE_CD_MIXED)); rb_define_const(mRubycdio,"DISC_MODE_DVD_ROM", INT2NUM(CDIO_DISC_MODE_DVD_ROM)); rb_define_const(mRubycdio,"DISC_MODE_DVD_RAM", INT2NUM(CDIO_DISC_MODE_DVD_RAM)); rb_define_const(mRubycdio,"DISC_MODE_DVD_R", INT2NUM(CDIO_DISC_MODE_DVD_R)); rb_define_const(mRubycdio,"DISC_MODE_DVD_RW", INT2NUM(CDIO_DISC_MODE_DVD_RW)); rb_define_const(mRubycdio,"DISC_MODE_DVD_PR", INT2NUM(CDIO_DISC_MODE_DVD_PR)); rb_define_const(mRubycdio,"DISC_MODE_DVD_PRW", INT2NUM(CDIO_DISC_MODE_DVD_PRW)); rb_define_const(mRubycdio,"DISC_MODE_DVD_OTHER", INT2NUM(CDIO_DISC_MODE_DVD_OTHER)); rb_define_const(mRubycdio,"DISC_MODE_NO_INFO", INT2NUM(CDIO_DISC_MODE_NO_INFO)); rb_define_const(mRubycdio,"DISC_MODE_ERROR", INT2NUM(CDIO_DISC_MODE_ERROR)); rb_define_const(mRubycdio,"DISC_MODE_CD_I", INT2NUM(CDIO_DISC_MODE_CD_I)); rb_define_module_function(mRubycdio, "get_disc_last_lsn", _wrap_get_disc_last_lsn, -1); rb_define_module_function(mRubycdio, "get_disc_mode", _wrap_get_disc_mode, -1); rb_define_module_function(mRubycdio, "get_joliet_level", _wrap_get_joliet_level, -1); rb_define_module_function(mRubycdio, "get_mcn", _wrap_get_mcn, -1); rb_define_module_function(mRubycdio, "get_num_tracks", _wrap_get_num_tracks, -1); rb_define_const(mRubycdio,"INCLUDE_CLASS", INT2NUM(0)); }