// // ssl/impl/rfc2818_verification.ipp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2018 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_SSL_IMPL_RFC2818_VERIFICATION_IPP #define BOOST_ASIO_SSL_IMPL_RFC2818_VERIFICATION_IPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #include #include #include #include #include namespace boost { namespace asio { namespace ssl { bool rfc2818_verification::operator()( bool preverified, verify_context& ctx) const { using namespace std; // For memcmp. // Don't bother looking at certificates that have failed pre-verification. if (!preverified) return false; // We're only interested in checking the certificate at the end of the chain. int depth = X509_STORE_CTX_get_error_depth(ctx.native_handle()); if (depth > 0) return true; // Try converting the host name to an address. If it is an address then we // need to look for an IP address in the certificate rather than a host name. boost::system::error_code ec; ip::address address = ip::make_address(host_, ec); bool is_address = !ec; X509* cert = X509_STORE_CTX_get_current_cert(ctx.native_handle()); // Go through the alternate names in the certificate looking for matching DNS // or IP address entries. GENERAL_NAMES* gens = static_cast( X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0)); for (int i = 0; i < sk_GENERAL_NAME_num(gens); ++i) { GENERAL_NAME* gen = sk_GENERAL_NAME_value(gens, i); if (gen->type == GEN_DNS && !is_address) { ASN1_IA5STRING* domain = gen->d.dNSName; if (domain->type == V_ASN1_IA5STRING && domain->data && domain->length) { const char* pattern = reinterpret_cast(domain->data); std::size_t pattern_length = domain->length; if (match_pattern(pattern, pattern_length, host_.c_str())) { GENERAL_NAMES_free(gens); return true; } } } else if (gen->type == GEN_IPADD && is_address) { ASN1_OCTET_STRING* ip_address = gen->d.iPAddress; if (ip_address->type == V_ASN1_OCTET_STRING && ip_address->data) { if (address.is_v4() && ip_address->length == 4) { ip::address_v4::bytes_type bytes = address.to_v4().to_bytes(); if (memcmp(bytes.data(), ip_address->data, 4) == 0) { GENERAL_NAMES_free(gens); return true; } } else if (address.is_v6() && ip_address->length == 16) { ip::address_v6::bytes_type bytes = address.to_v6().to_bytes(); if (memcmp(bytes.data(), ip_address->data, 16) == 0) { GENERAL_NAMES_free(gens); return true; } } } } } GENERAL_NAMES_free(gens); // No match in the alternate names, so try the common names. We should only // use the "most specific" common name, which is the last one in the list. X509_NAME* name = X509_get_subject_name(cert); int i = -1; ASN1_STRING* common_name = 0; while ((i = X509_NAME_get_index_by_NID(name, NID_commonName, i)) >= 0) { X509_NAME_ENTRY* name_entry = X509_NAME_get_entry(name, i); common_name = X509_NAME_ENTRY_get_data(name_entry); } if (common_name && common_name->data && common_name->length) { const char* pattern = reinterpret_cast(common_name->data); std::size_t pattern_length = common_name->length; if (match_pattern(pattern, pattern_length, host_.c_str())) return true; } return false; } bool rfc2818_verification::match_pattern(const char* pattern, std::size_t pattern_length, const char* host) { using namespace std; // For tolower. const char* p = pattern; const char* p_end = p + pattern_length; const char* h = host; while (p != p_end && *h) { if (*p == '*') { ++p; while (*h && *h != '.') if (match_pattern(p, p_end - p, h++)) return true; } else if (tolower(*p) == tolower(*h)) { ++p; ++h; } else { return false; } } return p == p_end && !*h; } } // namespace ssl } // namespace asio } // namespace boost #include #endif // BOOST_ASIO_SSL_IMPL_RFC2818_VERIFICATION_IPP