// Copyright (C) 2009 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. // This code was adapted from code from the JAMA part of NIST's TNT library. // See: http://math.nist.gov/tnt/ #ifndef DLIB_MATRIX_QR_DECOMPOSITION_H #define DLIB_MATRIX_QR_DECOMPOSITION_H #include "matrix.h" #include "matrix_utilities.h" #include "matrix_subexp.h" #ifdef DLIB_USE_LAPACK #include "lapack/geqrf.h" #include "lapack/ormqr.h" #endif #include "matrix_trsm.h" namespace dlib { template < typename matrix_exp_type > class qr_decomposition { public: const static long NR = matrix_exp_type::NR; const static long NC = matrix_exp_type::NC; typedef typename matrix_exp_type::type type; typedef typename matrix_exp_type::mem_manager_type mem_manager_type; typedef typename matrix_exp_type::layout_type layout_type; typedef matrix<type,0,0,mem_manager_type,layout_type> matrix_type; // You have supplied an invalid type of matrix_exp_type. You have // to use this object with matrices that contain float or double type data. COMPILE_TIME_ASSERT((is_same_type<float, type>::value || is_same_type<double, type>::value )); template <typename EXP> qr_decomposition( const matrix_exp<EXP>& A ); bool is_full_rank( ) const; long nr( ) const; long nc( ) const; const matrix_type get_r ( ) const; const matrix_type get_q ( ) const; template <typename T, long R, long C, typename MM, typename L> void get_q ( matrix<T,R,C,MM,L>& Q ) const; template <typename EXP> const matrix_type solve ( const matrix_exp<EXP>& B ) const; private: #ifndef DLIB_USE_LAPACK template <typename EXP> const matrix_type solve_mat ( const matrix_exp<EXP>& B ) const; template <typename EXP> const matrix_type solve_vect ( const matrix_exp<EXP>& B ) const; #endif /** Array for internal storage of decomposition. @serial internal array storage. */ matrix<type,0,0,mem_manager_type,column_major_layout> QR_; /** Row and column dimensions. @serial column dimension. @serial row dimension. */ long m, n; /** Array for internal storage of diagonal of R. @serial diagonal of R. */ typedef matrix<type,0,1,mem_manager_type,column_major_layout> column_vector_type; column_vector_type tau; column_vector_type Rdiag; }; // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // Member functions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> template <typename EXP> qr_decomposition<matrix_exp_type>:: qr_decomposition( const matrix_exp<EXP>& A ) { COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value)); // make sure requires clause is not broken DLIB_ASSERT(A.nr() >= A.nc() && A.size() > 0, "\tqr_decomposition::qr_decomposition(A)" << "\n\tInvalid inputs were given to this function" << "\n\tA.nr(): " << A.nr() << "\n\tA.nc(): " << A.nc() << "\n\tA.size(): " << A.size() << "\n\tthis: " << this ); QR_ = A; m = A.nr(); n = A.nc(); #ifdef DLIB_USE_LAPACK lapack::geqrf(QR_, tau); Rdiag = diag(QR_); #else Rdiag.set_size(n); long i=0, j=0, k=0; // Main loop. for (k = 0; k < n; k++) { // Compute 2-norm of k-th column without under/overflow. type nrm = 0; for (i = k; i < m; i++) { nrm = hypot(nrm,QR_(i,k)); } if (nrm != 0.0) { // Form k-th Householder vector. if (QR_(k,k) < 0) { nrm = -nrm; } for (i = k; i < m; i++) { QR_(i,k) /= nrm; } QR_(k,k) += 1.0; // Apply transformation to remaining columns. for (j = k+1; j < n; j++) { type s = 0.0; for (i = k; i < m; i++) { s += QR_(i,k)*QR_(i,j); } s = -s/QR_(k,k); for (i = k; i < m; i++) { QR_(i,j) += s*QR_(i,k); } } } Rdiag(k) = -nrm; } #endif } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> long qr_decomposition<matrix_exp_type>:: nr ( ) const { return m; } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> long qr_decomposition<matrix_exp_type>:: nc ( ) const { return n; } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> bool qr_decomposition<matrix_exp_type>:: is_full_rank( ) const { type eps = max(abs(Rdiag)); if (eps != 0) eps *= std::sqrt(std::numeric_limits<type>::epsilon())/100; else eps = 1; // there is no max so just use 1 // check if any of the elements of Rdiag are effectively 0 return min(abs(Rdiag)) > eps; } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>:: get_r( ) const { matrix_type R(n,n); for (long i = 0; i < n; i++) { for (long j = 0; j < n; j++) { if (i < j) { R(i,j) = QR_(i,j); } else if (i == j) { R(i,j) = Rdiag(i); } else { R(i,j) = 0.0; } } } return R; } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>:: get_q( ) const { matrix_type Q; get_q(Q); return Q; } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> template <typename T, long R, long C, typename MM, typename L> void qr_decomposition<matrix_exp_type>:: get_q( matrix<T,R,C,MM,L>& X ) const { #ifdef DLIB_USE_LAPACK // Take only the first n columns of an identity matrix. This way // X ends up being an m by n matrix. X = colm(identity_matrix<type>(m), range(0,n-1)); // Compute Y = Q*X lapack::ormqr('L','N', QR_, tau, X); #else long i=0, j=0, k=0; X.set_size(m,n); for (k = n-1; k >= 0; k--) { for (i = 0; i < m; i++) { X(i,k) = 0.0; } X(k,k) = 1.0; for (j = k; j < n; j++) { if (QR_(k,k) != 0) { type s = 0.0; for (i = k; i < m; i++) { s += QR_(i,k)*X(i,j); } s = -s/QR_(k,k); for (i = k; i < m; i++) { X(i,j) += s*QR_(i,k); } } } } #endif } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> template <typename EXP> const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>:: solve( const matrix_exp<EXP>& B ) const { COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value)); // make sure requires clause is not broken DLIB_ASSERT(B.nr() == nr(), "\tconst matrix_type qr_decomposition::solve(B)" << "\n\tInvalid inputs were given to this function" << "\n\tB.nr(): " << B.nr() << "\n\tnr(): " << nr() << "\n\tthis: " << this ); #ifdef DLIB_USE_LAPACK using namespace blas_bindings; matrix<type,0,0,mem_manager_type,column_major_layout> X(B); // Compute Y = transpose(Q)*B lapack::ormqr('L','T',QR_, tau, X); // Solve R*X = Y; triangular_solver(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, QR_, X, n); /* return n x nx portion of X */ return subm(X,0,0,n,B.nc()); #else // just call the right version of the solve function if (B.nc() == 1) return solve_vect(B); else return solve_mat(B); #endif } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // Private member functions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- #ifndef DLIB_USE_LAPACK template <typename matrix_exp_type> template <typename EXP> const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>:: solve_vect( const matrix_exp<EXP>& B ) const { column_vector_type x(B); // Compute Y = transpose(Q)*B for (long k = 0; k < n; k++) { type s = 0.0; for (long i = k; i < m; i++) { s += QR_(i,k)*x(i); } s = -s/QR_(k,k); for (long i = k; i < m; i++) { x(i) += s*QR_(i,k); } } // Solve R*X = Y; for (long k = n-1; k >= 0; k--) { x(k) /= Rdiag(k); for (long i = 0; i < k; i++) { x(i) -= x(k)*QR_(i,k); } } /* return n x 1 portion of x */ return colm(x,0,n); } // ---------------------------------------------------------------------------------------- template <typename matrix_exp_type> template <typename EXP> const typename qr_decomposition<matrix_exp_type>::matrix_type qr_decomposition<matrix_exp_type>:: solve_mat( const matrix_exp<EXP>& B ) const { const long nx = B.nc(); matrix_type X(B); long i=0, j=0, k=0; // Compute Y = transpose(Q)*B for (k = 0; k < n; k++) { for (j = 0; j < nx; j++) { type s = 0.0; for (i = k; i < m; i++) { s += QR_(i,k)*X(i,j); } s = -s/QR_(k,k); for (i = k; i < m; i++) { X(i,j) += s*QR_(i,k); } } } // Solve R*X = Y; for (k = n-1; k >= 0; k--) { for (j = 0; j < nx; j++) { X(k,j) /= Rdiag(k); } for (i = 0; i < k; i++) { for (j = 0; j < nx; j++) { X(i,j) -= X(k,j)*QR_(i,k); } } } /* return n x nx portion of X */ return subm(X,0,0,n,nx); } // ---------------------------------------------------------------------------------------- #endif // DLIB_USE_LAPACK not defined } #endif // DLIB_MATRIX_QR_DECOMPOSITION_H