Sha256: 021df534f849b0e1c191a8d87fa4b87e58a61463e9cee81b83183456e638f7b2
Contents?: true
Size: 1.88 KB
Versions: 7
Compression:
Stored size: 1.88 KB
Contents
module Elasticsearch module XPack module API module MachineLearning module Actions # Retrieve job results for one or more influencers # # @option arguments [String] :job_id [TODO] (*Required*) # @option arguments [Hash] :body Influencer selection criteria # @option arguments [Boolean] :exclude_interim Exclude interim results # @option arguments [Int] :from skips a number of influencers # @option arguments [Int] :size specifies a max number of influencers to get # @option arguments [String] :start start timestamp for the requested influencers # @option arguments [String] :end end timestamp for the requested influencers # @option arguments [Double] :influencer_score influencer score threshold for the requested influencers # @option arguments [String] :sort sort field for the requested influencers # @option arguments [Boolean] :desc whether the results should be sorted in decending order # # @see http://www.elastic.co/guide/en/elasticsearch/reference/current/ml-get-influencer.html # def get_influencers(arguments={}) raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] valid_params = [ :exclude_interim, :from, :size, :start, :end, :influencer_score, :sort, :desc ] method = Elasticsearch::API::HTTP_GET path = "_xpack/ml/anomaly_detectors/#{arguments[:job_id]}/results/influencers" params = Elasticsearch::API::Utils.__validate_and_extract_params arguments, valid_params body = arguments[:body] perform_request(method, path, params, body).body end end end end end end
Version data entries
7 entries across 7 versions & 1 rubygems