(function (global, factory) { if (typeof define === "function" && define.amd) { define(["exports", "three", "../libs/fflate.module.js"], factory); } else if (typeof exports !== "undefined") { factory(exports, require("three"), require("../libs/fflate.module.js")); } else { var mod = { exports: {} }; factory(mod.exports, global.three, global.fflateModule); global.EXRLoader = mod.exports; } })(typeof globalThis !== "undefined" ? globalThis : typeof self !== "undefined" ? self : this, function (_exports, _three, fflate) { "use strict"; Object.defineProperty(_exports, "__esModule", { value: true }); _exports.EXRLoader = void 0; fflate = _interopRequireWildcard(fflate); function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); } function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || typeof obj !== "object" && typeof obj !== "function") { return { default: obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj.default = obj; if (cache) { cache.set(obj, newObj); } return newObj; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _get() { if (typeof Reflect !== "undefined" && Reflect.get) { _get = Reflect.get; } else { _get = function _get(target, property, receiver) { var base = _superPropBase(target, property); if (!base) return; var desc = Object.getOwnPropertyDescriptor(base, property); if (desc.get) { return desc.get.call(arguments.length < 3 ? target : receiver); } return desc.value; }; } return _get.apply(this, arguments); } function _superPropBase(object, property) { while (!Object.prototype.hasOwnProperty.call(object, property)) { object = _getPrototypeOf(object); if (object === null) break; } return object; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } Object.defineProperty(subClass, "prototype", { value: Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }), writable: false }); if (superClass) _setPrototypeOf(subClass, superClass); } function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); } function _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; } function _possibleConstructorReturn(self, call) { if (call && (typeof call === "object" || typeof call === "function")) { return call; } else if (call !== void 0) { throw new TypeError("Derived constructors may only return object or undefined"); } return _assertThisInitialized(self); } function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; } function _isNativeReflectConstruct() { if (typeof Reflect === "undefined" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === "function") return true; try { Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); return true; } catch (e) { return false; } } function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); } /** * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression. * Supports reading as UnsignedByte, HalfFloat and Float type data texture. * * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita * implementation, so I have preserved their copyright notices. */ // /* // Copyright (c) 2014 - 2017, Syoyo Fujita // All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the Syoyo Fujita nor the // names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // */ // // TinyEXR contains some OpenEXR code, which is licensed under ------------ // /////////////////////////////////////////////////////////////////////////// // // // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // // Digital Ltd. LLC // // // // All rights reserved. // // // // Redistribution and use in source and binary forms, with or without // // modification, are permitted provided that the following conditions are // // met: // // * Redistributions of source code must retain the above copyright // // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above // // copyright notice, this list of conditions and the following disclaimer // // in the documentation and/or other materials provided with the // // distribution. // // * Neither the name of Industrial Light & Magic nor the names of // // its contributors may be used to endorse or promote products derived // // from this software without specific prior written permission. // // // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // // /////////////////////////////////////////////////////////////////////////// // // End of OpenEXR license ------------------------------------------------- var EXRLoader = /*#__PURE__*/function (_DataTextureLoader) { _inherits(EXRLoader, _DataTextureLoader); var _super = _createSuper(EXRLoader); function EXRLoader(manager) { var _this; _classCallCheck(this, EXRLoader); _this = _super.call(this, manager); _this.type = _three.HalfFloatType; return _this; } _createClass(EXRLoader, [{ key: "parse", value: function parse(buffer) { var USHORT_RANGE = 1 << 16; var BITMAP_SIZE = USHORT_RANGE >> 3; var HUF_ENCBITS = 16; // literal (value) bit length var HUF_DECBITS = 14; // decoding bit size (>= 8) var HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size var HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size var HUF_DECMASK = HUF_DECSIZE - 1; var NBITS = 16; var A_OFFSET = 1 << NBITS - 1; var MOD_MASK = (1 << NBITS) - 1; var SHORT_ZEROCODE_RUN = 59; var LONG_ZEROCODE_RUN = 63; var SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; var ULONG_SIZE = 8; var FLOAT32_SIZE = 4; var INT32_SIZE = 4; var INT16_SIZE = 2; var INT8_SIZE = 1; var STATIC_HUFFMAN = 0; var DEFLATE = 1; var UNKNOWN = 0; var LOSSY_DCT = 1; var RLE = 2; var logBase = Math.pow(2.7182818, 2.2); var tmpDataView = new DataView(new ArrayBuffer(8)); function frexp(value) { if (value === 0) return [value, 0]; tmpDataView.setFloat64(0, value); var bits = tmpDataView.getUint32(0) >>> 20 & 0x7FF; if (bits === 0) { // denormal tmpDataView.setFloat64(0, value * Math.pow(2, 64)); // exp + 64 bits = (tmpDataView.getUint32(0) >>> 20 & 0x7FF) - 64; } var exponent = bits - 1022; var mantissa = ldexp(value, -exponent); return [mantissa, exponent]; } function ldexp(mantissa, exponent) { var steps = Math.min(3, Math.ceil(Math.abs(exponent) / 1023)); var result = mantissa; for (var i = 0; i < steps; i++) { result *= Math.pow(2, Math.floor((exponent + i) / steps)); } return result; } function reverseLutFromBitmap(bitmap, lut) { var k = 0; for (var i = 0; i < USHORT_RANGE; ++i) { if (i == 0 || bitmap[i >> 3] & 1 << (i & 7)) { lut[k++] = i; } } var n = k - 1; while (k < USHORT_RANGE) { lut[k++] = 0; } return n; } function hufClearDecTable(hdec) { for (var i = 0; i < HUF_DECSIZE; i++) { hdec[i] = {}; hdec[i].len = 0; hdec[i].lit = 0; hdec[i].p = null; } } var getBitsReturn = { l: 0, c: 0, lc: 0 }; function getBits(nBits, c, lc, uInt8Array, inOffset) { while (lc < nBits) { c = c << 8 | parseUint8Array(uInt8Array, inOffset); lc += 8; } lc -= nBits; getBitsReturn.l = c >> lc & (1 << nBits) - 1; getBitsReturn.c = c; getBitsReturn.lc = lc; } var hufTableBuffer = new Array(59); function hufCanonicalCodeTable(hcode) { for (var i = 0; i <= 58; ++i) { hufTableBuffer[i] = 0; } for (var i = 0; i < HUF_ENCSIZE; ++i) { hufTableBuffer[hcode[i]] += 1; } var c = 0; for (var i = 58; i > 0; --i) { var nc = c + hufTableBuffer[i] >> 1; hufTableBuffer[i] = c; c = nc; } for (var i = 0; i < HUF_ENCSIZE; ++i) { var l = hcode[i]; if (l > 0) hcode[i] = l | hufTableBuffer[l]++ << 6; } } function hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, hcode) { var p = inOffset; var c = 0; var lc = 0; for (; im <= iM; im++) { if (p.value - inOffset.value > ni) return false; getBits(6, c, lc, uInt8Array, p); var l = getBitsReturn.l; c = getBitsReturn.c; lc = getBitsReturn.lc; hcode[im] = l; if (l == LONG_ZEROCODE_RUN) { if (p.value - inOffset.value > ni) { throw 'Something wrong with hufUnpackEncTable'; } getBits(8, c, lc, uInt8Array, p); var zerun = getBitsReturn.l + SHORTEST_LONG_RUN; c = getBitsReturn.c; lc = getBitsReturn.lc; if (im + zerun > iM + 1) { throw 'Something wrong with hufUnpackEncTable'; } while (zerun--) { hcode[im++] = 0; } im--; } else if (l >= SHORT_ZEROCODE_RUN) { var zerun = l - SHORT_ZEROCODE_RUN + 2; if (im + zerun > iM + 1) { throw 'Something wrong with hufUnpackEncTable'; } while (zerun--) { hcode[im++] = 0; } im--; } } hufCanonicalCodeTable(hcode); } function hufLength(code) { return code & 63; } function hufCode(code) { return code >> 6; } function hufBuildDecTable(hcode, im, iM, hdecod) { for (; im <= iM; im++) { var c = hufCode(hcode[im]); var l = hufLength(hcode[im]); if (c >> l) { throw 'Invalid table entry'; } if (l > HUF_DECBITS) { var pl = hdecod[c >> l - HUF_DECBITS]; if (pl.len) { throw 'Invalid table entry'; } pl.lit++; if (pl.p) { var p = pl.p; pl.p = new Array(pl.lit); for (var i = 0; i < pl.lit - 1; ++i) { pl.p[i] = p[i]; } } else { pl.p = new Array(1); } pl.p[pl.lit - 1] = im; } else if (l) { var plOffset = 0; for (var i = 1 << HUF_DECBITS - l; i > 0; i--) { var pl = hdecod[(c << HUF_DECBITS - l) + plOffset]; if (pl.len || pl.p) { throw 'Invalid table entry'; } pl.len = l; pl.lit = im; plOffset++; } } } return true; } var getCharReturn = { c: 0, lc: 0 }; function getChar(c, lc, uInt8Array, inOffset) { c = c << 8 | parseUint8Array(uInt8Array, inOffset); lc += 8; getCharReturn.c = c; getCharReturn.lc = lc; } var getCodeReturn = { c: 0, lc: 0 }; function getCode(po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset) { if (po == rlc) { if (lc < 8) { getChar(c, lc, uInt8Array, inOffset); c = getCharReturn.c; lc = getCharReturn.lc; } lc -= 8; var cs = c >> lc; var cs = new Uint8Array([cs])[0]; if (outBufferOffset.value + cs > outBufferEndOffset) { return false; } var s = outBuffer[outBufferOffset.value - 1]; while (cs-- > 0) { outBuffer[outBufferOffset.value++] = s; } } else if (outBufferOffset.value < outBufferEndOffset) { outBuffer[outBufferOffset.value++] = po; } else { return false; } getCodeReturn.c = c; getCodeReturn.lc = lc; } function UInt16(value) { return value & 0xFFFF; } function Int16(value) { var ref = UInt16(value); return ref > 0x7FFF ? ref - 0x10000 : ref; } var wdec14Return = { a: 0, b: 0 }; function wdec14(l, h) { var ls = Int16(l); var hs = Int16(h); var hi = hs; var ai = ls + (hi & 1) + (hi >> 1); var as = ai; var bs = ai - hi; wdec14Return.a = as; wdec14Return.b = bs; } function wdec16(l, h) { var m = UInt16(l); var d = UInt16(h); var bb = m - (d >> 1) & MOD_MASK; var aa = d + bb - A_OFFSET & MOD_MASK; wdec14Return.a = aa; wdec14Return.b = bb; } function wav2Decode(buffer, j, nx, ox, ny, oy, mx) { var w14 = mx < 1 << 14; var n = nx > ny ? ny : nx; var p = 1; var p2; while (p <= n) { p <<= 1; } p >>= 1; p2 = p; p >>= 1; while (p >= 1) { var py = 0; var ey = py + oy * (ny - p2); var oy1 = oy * p; var oy2 = oy * p2; var ox1 = ox * p; var ox2 = ox * p2; var i00, i01, i10, i11; for (; py <= ey; py += oy2) { var px = py; var ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { var p01 = px + ox1; var p10 = px + oy1; var p11 = p10 + ox1; if (w14) { wdec14(buffer[px + j], buffer[p10 + j]); i00 = wdec14Return.a; i10 = wdec14Return.b; wdec14(buffer[p01 + j], buffer[p11 + j]); i01 = wdec14Return.a; i11 = wdec14Return.b; wdec14(i00, i01); buffer[px + j] = wdec14Return.a; buffer[p01 + j] = wdec14Return.b; wdec14(i10, i11); buffer[p10 + j] = wdec14Return.a; buffer[p11 + j] = wdec14Return.b; } else { wdec16(buffer[px + j], buffer[p10 + j]); i00 = wdec14Return.a; i10 = wdec14Return.b; wdec16(buffer[p01 + j], buffer[p11 + j]); i01 = wdec14Return.a; i11 = wdec14Return.b; wdec16(i00, i01); buffer[px + j] = wdec14Return.a; buffer[p01 + j] = wdec14Return.b; wdec16(i10, i11); buffer[p10 + j] = wdec14Return.a; buffer[p11 + j] = wdec14Return.b; } } if (nx & p) { var p10 = px + oy1; if (w14) wdec14(buffer[px + j], buffer[p10 + j]);else wdec16(buffer[px + j], buffer[p10 + j]); i00 = wdec14Return.a; buffer[p10 + j] = wdec14Return.b; buffer[px + j] = i00; } } if (ny & p) { var px = py; var ex = py + ox * (nx - p2); for (; px <= ex; px += ox2) { var p01 = px + ox1; if (w14) wdec14(buffer[px + j], buffer[p01 + j]);else wdec16(buffer[px + j], buffer[p01 + j]); i00 = wdec14Return.a; buffer[p01 + j] = wdec14Return.b; buffer[px + j] = i00; } } p2 = p; p >>= 1; } return py; } function hufDecode(encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset) { var c = 0; var lc = 0; var outBufferEndOffset = no; var inOffsetEnd = Math.trunc(inOffset.value + (ni + 7) / 8); while (inOffset.value < inOffsetEnd) { getChar(c, lc, uInt8Array, inOffset); c = getCharReturn.c; lc = getCharReturn.lc; while (lc >= HUF_DECBITS) { var index = c >> lc - HUF_DECBITS & HUF_DECMASK; var pl = decodingTable[index]; if (pl.len) { lc -= pl.len; getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset); c = getCodeReturn.c; lc = getCodeReturn.lc; } else { if (!pl.p) { throw 'hufDecode issues'; } var j; for (j = 0; j < pl.lit; j++) { var l = hufLength(encodingTable[pl.p[j]]); while (lc < l && inOffset.value < inOffsetEnd) { getChar(c, lc, uInt8Array, inOffset); c = getCharReturn.c; lc = getCharReturn.lc; } if (lc >= l) { if (hufCode(encodingTable[pl.p[j]]) == (c >> lc - l & (1 << l) - 1)) { lc -= l; getCode(pl.p[j], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset); c = getCodeReturn.c; lc = getCodeReturn.lc; break; } } } if (j == pl.lit) { throw 'hufDecode issues'; } } } } var i = 8 - ni & 7; c >>= i; lc -= i; while (lc > 0) { var pl = decodingTable[c << HUF_DECBITS - lc & HUF_DECMASK]; if (pl.len) { lc -= pl.len; getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset); c = getCodeReturn.c; lc = getCodeReturn.lc; } else { throw 'hufDecode issues'; } } return true; } function hufUncompress(uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw) { var outOffset = { value: 0 }; var initialInOffset = inOffset.value; var im = parseUint32(inDataView, inOffset); var iM = parseUint32(inDataView, inOffset); inOffset.value += 4; var nBits = parseUint32(inDataView, inOffset); inOffset.value += 4; if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) { throw 'Something wrong with HUF_ENCSIZE'; } var freq = new Array(HUF_ENCSIZE); var hdec = new Array(HUF_DECSIZE); hufClearDecTable(hdec); var ni = nCompressed - (inOffset.value - initialInOffset); hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, freq); if (nBits > 8 * (nCompressed - (inOffset.value - initialInOffset))) { throw 'Something wrong with hufUncompress'; } hufBuildDecTable(freq, im, iM, hdec); hufDecode(freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset); } function applyLut(lut, data, nData) { for (var i = 0; i < nData; ++i) { data[i] = lut[data[i]]; } } function predictor(source) { for (var t = 1; t < source.length; t++) { var d = source[t - 1] + source[t] - 128; source[t] = d; } } function interleaveScalar(source, out) { var t1 = 0; var t2 = Math.floor((source.length + 1) / 2); var s = 0; var stop = source.length - 1; while (true) { if (s > stop) break; out[s++] = source[t1++]; if (s > stop) break; out[s++] = source[t2++]; } } function decodeRunLength(source) { var size = source.byteLength; var out = new Array(); var p = 0; var reader = new DataView(source); while (size > 0) { var l = reader.getInt8(p++); if (l < 0) { var count = -l; size -= count + 1; for (var i = 0; i < count; i++) { out.push(reader.getUint8(p++)); } } else { var count = l; size -= 2; var value = reader.getUint8(p++); for (var i = 0; i < count + 1; i++) { out.push(value); } } } return out; } function lossyDctDecode(cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer) { var dataView = new DataView(outBuffer.buffer); var width = channelData[cscSet.idx[0]].width; var height = channelData[cscSet.idx[0]].height; var numComp = 3; var numFullBlocksX = Math.floor(width / 8.0); var numBlocksX = Math.ceil(width / 8.0); var numBlocksY = Math.ceil(height / 8.0); var leftoverX = width - (numBlocksX - 1) * 8; var leftoverY = height - (numBlocksY - 1) * 8; var currAcComp = { value: 0 }; var currDcComp = new Array(numComp); var dctData = new Array(numComp); var halfZigBlock = new Array(numComp); var rowBlock = new Array(numComp); var rowOffsets = new Array(numComp); for (var _comp = 0; _comp < numComp; ++_comp) { rowOffsets[_comp] = rowPtrs[cscSet.idx[_comp]]; currDcComp[_comp] = _comp < 1 ? 0 : currDcComp[_comp - 1] + numBlocksX * numBlocksY; dctData[_comp] = new Float32Array(64); halfZigBlock[_comp] = new Uint16Array(64); rowBlock[_comp] = new Uint16Array(numBlocksX * 64); } for (var blocky = 0; blocky < numBlocksY; ++blocky) { var maxY = 8; if (blocky == numBlocksY - 1) maxY = leftoverY; var maxX = 8; for (var blockx = 0; blockx < numBlocksX; ++blockx) { if (blockx == numBlocksX - 1) maxX = leftoverX; for (var _comp2 = 0; _comp2 < numComp; ++_comp2) { halfZigBlock[_comp2].fill(0); // set block DC component halfZigBlock[_comp2][0] = dcBuffer[currDcComp[_comp2]++]; // set block AC components unRleAC(currAcComp, acBuffer, halfZigBlock[_comp2]); // UnZigZag block to float unZigZag(halfZigBlock[_comp2], dctData[_comp2]); // decode float dct dctInverse(dctData[_comp2]); } if (numComp == 3) { csc709Inverse(dctData); } for (var _comp3 = 0; _comp3 < numComp; ++_comp3) { convertToHalf(dctData[_comp3], rowBlock[_comp3], blockx * 64); } } // blockx var _offset = 0; for (var _comp4 = 0; _comp4 < numComp; ++_comp4) { var _type = channelData[cscSet.idx[_comp4]].type; for (var _y = 8 * blocky; _y < 8 * blocky + maxY; ++_y) { _offset = rowOffsets[_comp4][_y]; for (var _blockx = 0; _blockx < numFullBlocksX; ++_blockx) { var src = _blockx * 64 + (_y & 0x7) * 8; dataView.setUint16(_offset + 0 * INT16_SIZE * _type, rowBlock[_comp4][src + 0], true); dataView.setUint16(_offset + 1 * INT16_SIZE * _type, rowBlock[_comp4][src + 1], true); dataView.setUint16(_offset + 2 * INT16_SIZE * _type, rowBlock[_comp4][src + 2], true); dataView.setUint16(_offset + 3 * INT16_SIZE * _type, rowBlock[_comp4][src + 3], true); dataView.setUint16(_offset + 4 * INT16_SIZE * _type, rowBlock[_comp4][src + 4], true); dataView.setUint16(_offset + 5 * INT16_SIZE * _type, rowBlock[_comp4][src + 5], true); dataView.setUint16(_offset + 6 * INT16_SIZE * _type, rowBlock[_comp4][src + 6], true); dataView.setUint16(_offset + 7 * INT16_SIZE * _type, rowBlock[_comp4][src + 7], true); _offset += 8 * INT16_SIZE * _type; } } // handle partial X blocks if (numFullBlocksX != numBlocksX) { for (var _y2 = 8 * blocky; _y2 < 8 * blocky + maxY; ++_y2) { var _offset2 = rowOffsets[_comp4][_y2] + 8 * numFullBlocksX * INT16_SIZE * _type; var _src = numFullBlocksX * 64 + (_y2 & 0x7) * 8; for (var _x = 0; _x < maxX; ++_x) { dataView.setUint16(_offset2 + _x * INT16_SIZE * _type, rowBlock[_comp4][_src + _x], true); } } } } // comp } // blocky var halfRow = new Uint16Array(width); var dataView = new DataView(outBuffer.buffer); // convert channels back to float, if needed for (var comp = 0; comp < numComp; ++comp) { channelData[cscSet.idx[comp]].decoded = true; var type = channelData[cscSet.idx[comp]].type; if (channelData[comp].type != 2) continue; for (var y = 0; y < height; ++y) { var _offset3 = rowOffsets[comp][y]; for (var x = 0; x < width; ++x) { halfRow[x] = dataView.getUint16(_offset3 + x * INT16_SIZE * type, true); } for (var x = 0; x < width; ++x) { dataView.setFloat32(_offset3 + x * INT16_SIZE * type, decodeFloat16(halfRow[x]), true); } } } } function unRleAC(currAcComp, acBuffer, halfZigBlock) { var acValue; var dctComp = 1; while (dctComp < 64) { acValue = acBuffer[currAcComp.value]; if (acValue == 0xff00) { dctComp = 64; } else if (acValue >> 8 == 0xff) { dctComp += acValue & 0xff; } else { halfZigBlock[dctComp] = acValue; dctComp++; } currAcComp.value++; } } function unZigZag(src, dst) { dst[0] = decodeFloat16(src[0]); dst[1] = decodeFloat16(src[1]); dst[2] = decodeFloat16(src[5]); dst[3] = decodeFloat16(src[6]); dst[4] = decodeFloat16(src[14]); dst[5] = decodeFloat16(src[15]); dst[6] = decodeFloat16(src[27]); dst[7] = decodeFloat16(src[28]); dst[8] = decodeFloat16(src[2]); dst[9] = decodeFloat16(src[4]); dst[10] = decodeFloat16(src[7]); dst[11] = decodeFloat16(src[13]); dst[12] = decodeFloat16(src[16]); dst[13] = decodeFloat16(src[26]); dst[14] = decodeFloat16(src[29]); dst[15] = decodeFloat16(src[42]); dst[16] = decodeFloat16(src[3]); dst[17] = decodeFloat16(src[8]); dst[18] = decodeFloat16(src[12]); dst[19] = decodeFloat16(src[17]); dst[20] = decodeFloat16(src[25]); dst[21] = decodeFloat16(src[30]); dst[22] = decodeFloat16(src[41]); dst[23] = decodeFloat16(src[43]); dst[24] = decodeFloat16(src[9]); dst[25] = decodeFloat16(src[11]); dst[26] = decodeFloat16(src[18]); dst[27] = decodeFloat16(src[24]); dst[28] = decodeFloat16(src[31]); dst[29] = decodeFloat16(src[40]); dst[30] = decodeFloat16(src[44]); dst[31] = decodeFloat16(src[53]); dst[32] = decodeFloat16(src[10]); dst[33] = decodeFloat16(src[19]); dst[34] = decodeFloat16(src[23]); dst[35] = decodeFloat16(src[32]); dst[36] = decodeFloat16(src[39]); dst[37] = decodeFloat16(src[45]); dst[38] = decodeFloat16(src[52]); dst[39] = decodeFloat16(src[54]); dst[40] = decodeFloat16(src[20]); dst[41] = decodeFloat16(src[22]); dst[42] = decodeFloat16(src[33]); dst[43] = decodeFloat16(src[38]); dst[44] = decodeFloat16(src[46]); dst[45] = decodeFloat16(src[51]); dst[46] = decodeFloat16(src[55]); dst[47] = decodeFloat16(src[60]); dst[48] = decodeFloat16(src[21]); dst[49] = decodeFloat16(src[34]); dst[50] = decodeFloat16(src[37]); dst[51] = decodeFloat16(src[47]); dst[52] = decodeFloat16(src[50]); dst[53] = decodeFloat16(src[56]); dst[54] = decodeFloat16(src[59]); dst[55] = decodeFloat16(src[61]); dst[56] = decodeFloat16(src[35]); dst[57] = decodeFloat16(src[36]); dst[58] = decodeFloat16(src[48]); dst[59] = decodeFloat16(src[49]); dst[60] = decodeFloat16(src[57]); dst[61] = decodeFloat16(src[58]); dst[62] = decodeFloat16(src[62]); dst[63] = decodeFloat16(src[63]); } function dctInverse(data) { var a = 0.5 * Math.cos(3.14159 / 4.0); var b = 0.5 * Math.cos(3.14159 / 16.0); var c = 0.5 * Math.cos(3.14159 / 8.0); var d = 0.5 * Math.cos(3.0 * 3.14159 / 16.0); var e = 0.5 * Math.cos(5.0 * 3.14159 / 16.0); var f = 0.5 * Math.cos(3.0 * 3.14159 / 8.0); var g = 0.5 * Math.cos(7.0 * 3.14159 / 16.0); var alpha = new Array(4); var beta = new Array(4); var theta = new Array(4); var gamma = new Array(4); for (var row = 0; row < 8; ++row) { var rowPtr = row * 8; alpha[0] = c * data[rowPtr + 2]; alpha[1] = f * data[rowPtr + 2]; alpha[2] = c * data[rowPtr + 6]; alpha[3] = f * data[rowPtr + 6]; beta[0] = b * data[rowPtr + 1] + d * data[rowPtr + 3] + e * data[rowPtr + 5] + g * data[rowPtr + 7]; beta[1] = d * data[rowPtr + 1] - g * data[rowPtr + 3] - b * data[rowPtr + 5] - e * data[rowPtr + 7]; beta[2] = e * data[rowPtr + 1] - b * data[rowPtr + 3] + g * data[rowPtr + 5] + d * data[rowPtr + 7]; beta[3] = g * data[rowPtr + 1] - e * data[rowPtr + 3] + d * data[rowPtr + 5] - b * data[rowPtr + 7]; theta[0] = a * (data[rowPtr + 0] + data[rowPtr + 4]); theta[3] = a * (data[rowPtr + 0] - data[rowPtr + 4]); theta[1] = alpha[0] + alpha[3]; theta[2] = alpha[1] - alpha[2]; gamma[0] = theta[0] + theta[1]; gamma[1] = theta[3] + theta[2]; gamma[2] = theta[3] - theta[2]; gamma[3] = theta[0] - theta[1]; data[rowPtr + 0] = gamma[0] + beta[0]; data[rowPtr + 1] = gamma[1] + beta[1]; data[rowPtr + 2] = gamma[2] + beta[2]; data[rowPtr + 3] = gamma[3] + beta[3]; data[rowPtr + 4] = gamma[3] - beta[3]; data[rowPtr + 5] = gamma[2] - beta[2]; data[rowPtr + 6] = gamma[1] - beta[1]; data[rowPtr + 7] = gamma[0] - beta[0]; } for (var column = 0; column < 8; ++column) { alpha[0] = c * data[16 + column]; alpha[1] = f * data[16 + column]; alpha[2] = c * data[48 + column]; alpha[3] = f * data[48 + column]; beta[0] = b * data[8 + column] + d * data[24 + column] + e * data[40 + column] + g * data[56 + column]; beta[1] = d * data[8 + column] - g * data[24 + column] - b * data[40 + column] - e * data[56 + column]; beta[2] = e * data[8 + column] - b * data[24 + column] + g * data[40 + column] + d * data[56 + column]; beta[3] = g * data[8 + column] - e * data[24 + column] + d * data[40 + column] - b * data[56 + column]; theta[0] = a * (data[column] + data[32 + column]); theta[3] = a * (data[column] - data[32 + column]); theta[1] = alpha[0] + alpha[3]; theta[2] = alpha[1] - alpha[2]; gamma[0] = theta[0] + theta[1]; gamma[1] = theta[3] + theta[2]; gamma[2] = theta[3] - theta[2]; gamma[3] = theta[0] - theta[1]; data[0 + column] = gamma[0] + beta[0]; data[8 + column] = gamma[1] + beta[1]; data[16 + column] = gamma[2] + beta[2]; data[24 + column] = gamma[3] + beta[3]; data[32 + column] = gamma[3] - beta[3]; data[40 + column] = gamma[2] - beta[2]; data[48 + column] = gamma[1] - beta[1]; data[56 + column] = gamma[0] - beta[0]; } } function csc709Inverse(data) { for (var i = 0; i < 64; ++i) { var y = data[0][i]; var cb = data[1][i]; var cr = data[2][i]; data[0][i] = y + 1.5747 * cr; data[1][i] = y - 0.1873 * cb - 0.4682 * cr; data[2][i] = y + 1.8556 * cb; } } function convertToHalf(src, dst, idx) { for (var i = 0; i < 64; ++i) { dst[idx + i] = _three.DataUtils.toHalfFloat(toLinear(src[i])); } } function toLinear(float) { if (float <= 1) { return Math.sign(float) * Math.pow(Math.abs(float), 2.2); } else { return Math.sign(float) * Math.pow(logBase, Math.abs(float) - 1.0); } } function uncompressRAW(info) { return new DataView(info.array.buffer, info.offset.value, info.size); } function uncompressRLE(info) { var compressed = info.viewer.buffer.slice(info.offset.value, info.offset.value + info.size); var rawBuffer = new Uint8Array(decodeRunLength(compressed)); var tmpBuffer = new Uint8Array(rawBuffer.length); predictor(rawBuffer); // revert predictor interleaveScalar(rawBuffer, tmpBuffer); // interleave pixels return new DataView(tmpBuffer.buffer); } function uncompressZIP(info) { var compressed = info.array.slice(info.offset.value, info.offset.value + info.size); if (typeof fflate === 'undefined') { console.error('THREE.EXRLoader: External library fflate.min.js required.'); } var rawBuffer = fflate.unzlibSync(compressed); // eslint-disable-line no-undef var tmpBuffer = new Uint8Array(rawBuffer.length); predictor(rawBuffer); // revert predictor interleaveScalar(rawBuffer, tmpBuffer); // interleave pixels return new DataView(tmpBuffer.buffer); } function uncompressPIZ(info) { var inDataView = info.viewer; var inOffset = { value: info.offset.value }; var tmpBufSize = info.width * scanlineBlockSize * (EXRHeader.channels.length * info.type); var outBuffer = new Uint16Array(tmpBufSize); var bitmap = new Uint8Array(BITMAP_SIZE); // Setup channel info var outBufferEnd = 0; var pizChannelData = new Array(info.channels); for (var i = 0; i < info.channels; i++) { pizChannelData[i] = {}; pizChannelData[i]['start'] = outBufferEnd; pizChannelData[i]['end'] = pizChannelData[i]['start']; pizChannelData[i]['nx'] = info.width; pizChannelData[i]['ny'] = info.lines; pizChannelData[i]['size'] = info.type; outBufferEnd += pizChannelData[i].nx * pizChannelData[i].ny * pizChannelData[i].size; } // Read range compression data var minNonZero = parseUint16(inDataView, inOffset); var maxNonZero = parseUint16(inDataView, inOffset); if (maxNonZero >= BITMAP_SIZE) { throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE'; } if (minNonZero <= maxNonZero) { for (var i = 0; i < maxNonZero - minNonZero + 1; i++) { bitmap[i + minNonZero] = parseUint8(inDataView, inOffset); } } // Reverse LUT var lut = new Uint16Array(USHORT_RANGE); var maxValue = reverseLutFromBitmap(bitmap, lut); var length = parseUint32(inDataView, inOffset); // Huffman decoding hufUncompress(info.array, inDataView, inOffset, length, outBuffer, outBufferEnd); // Wavelet decoding for (var i = 0; i < info.channels; ++i) { var cd = pizChannelData[i]; for (var j = 0; j < pizChannelData[i].size; ++j) { wav2Decode(outBuffer, cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, maxValue); } } // Expand the pixel data to their original range applyLut(lut, outBuffer, outBufferEnd); // Rearrange the pixel data into the format expected by the caller. var tmpOffset = 0; var tmpBuffer = new Uint8Array(outBuffer.buffer.byteLength); for (var y = 0; y < info.lines; y++) { for (var c = 0; c < info.channels; c++) { var cd = pizChannelData[c]; var n = cd.nx * cd.size; var cp = new Uint8Array(outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE); tmpBuffer.set(cp, tmpOffset); tmpOffset += n * INT16_SIZE; cd.end += n; } } return new DataView(tmpBuffer.buffer); } function uncompressPXR(info) { var compressed = info.array.slice(info.offset.value, info.offset.value + info.size); if (typeof fflate === 'undefined') { console.error('THREE.EXRLoader: External library fflate.min.js required.'); } var rawBuffer = fflate.unzlibSync(compressed); // eslint-disable-line no-undef var sz = info.lines * info.channels * info.width; var tmpBuffer = info.type == 1 ? new Uint16Array(sz) : new Uint32Array(sz); var tmpBufferEnd = 0; var writePtr = 0; var ptr = new Array(4); for (var y = 0; y < info.lines; y++) { for (var c = 0; c < info.channels; c++) { var pixel = 0; switch (info.type) { case 1: ptr[0] = tmpBufferEnd; ptr[1] = ptr[0] + info.width; tmpBufferEnd = ptr[1] + info.width; for (var j = 0; j < info.width; ++j) { var diff = rawBuffer[ptr[0]++] << 8 | rawBuffer[ptr[1]++]; pixel += diff; tmpBuffer[writePtr] = pixel; writePtr++; } break; case 2: ptr[0] = tmpBufferEnd; ptr[1] = ptr[0] + info.width; ptr[2] = ptr[1] + info.width; tmpBufferEnd = ptr[2] + info.width; for (var _j = 0; _j < info.width; ++_j) { var _diff = rawBuffer[ptr[0]++] << 24 | rawBuffer[ptr[1]++] << 16 | rawBuffer[ptr[2]++] << 8; pixel += _diff; tmpBuffer[writePtr] = pixel; writePtr++; } break; } } } return new DataView(tmpBuffer.buffer); } function uncompressDWA(info) { var inDataView = info.viewer; var inOffset = { value: info.offset.value }; var outBuffer = new Uint8Array(info.width * info.lines * (EXRHeader.channels.length * info.type * INT16_SIZE)); // Read compression header information var dwaHeader = { version: parseInt64(inDataView, inOffset), unknownUncompressedSize: parseInt64(inDataView, inOffset), unknownCompressedSize: parseInt64(inDataView, inOffset), acCompressedSize: parseInt64(inDataView, inOffset), dcCompressedSize: parseInt64(inDataView, inOffset), rleCompressedSize: parseInt64(inDataView, inOffset), rleUncompressedSize: parseInt64(inDataView, inOffset), rleRawSize: parseInt64(inDataView, inOffset), totalAcUncompressedCount: parseInt64(inDataView, inOffset), totalDcUncompressedCount: parseInt64(inDataView, inOffset), acCompression: parseInt64(inDataView, inOffset) }; if (dwaHeader.version < 2) throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported'; // Read channel ruleset information var channelRules = new Array(); var ruleSize = parseUint16(inDataView, inOffset) - INT16_SIZE; while (ruleSize > 0) { var name = parseNullTerminatedString(inDataView.buffer, inOffset); var value = parseUint8(inDataView, inOffset); var compression = value >> 2 & 3; var csc = (value >> 4) - 1; var index = new Int8Array([csc])[0]; var type = parseUint8(inDataView, inOffset); channelRules.push({ name: name, index: index, type: type, compression: compression }); ruleSize -= name.length + 3; } // Classify channels var channels = EXRHeader.channels; var channelData = new Array(info.channels); for (var i = 0; i < info.channels; ++i) { var cd = channelData[i] = {}; var channel = channels[i]; cd.name = channel.name; cd.compression = UNKNOWN; cd.decoded = false; cd.type = channel.pixelType; cd.pLinear = channel.pLinear; cd.width = info.width; cd.height = info.lines; } var cscSet = { idx: new Array(3) }; for (var offset = 0; offset < info.channels; ++offset) { var cd = channelData[offset]; for (var i = 0; i < channelRules.length; ++i) { var rule = channelRules[i]; if (cd.name == rule.name) { cd.compression = rule.compression; if (rule.index >= 0) { cscSet.idx[rule.index] = offset; } cd.offset = offset; } } } // Read DCT - AC component data if (dwaHeader.acCompressedSize > 0) { switch (dwaHeader.acCompression) { case STATIC_HUFFMAN: var acBuffer = new Uint16Array(dwaHeader.totalAcUncompressedCount); hufUncompress(info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount); break; case DEFLATE: var compressed = info.array.slice(inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount); var data = fflate.unzlibSync(compressed); // eslint-disable-line no-undef var acBuffer = new Uint16Array(data.buffer); inOffset.value += dwaHeader.totalAcUncompressedCount; break; } } // Read DCT - DC component data if (dwaHeader.dcCompressedSize > 0) { var zlibInfo = { array: info.array, offset: inOffset, size: dwaHeader.dcCompressedSize }; var dcBuffer = new Uint16Array(uncompressZIP(zlibInfo).buffer); inOffset.value += dwaHeader.dcCompressedSize; } // Read RLE compressed data if (dwaHeader.rleRawSize > 0) { var compressed = info.array.slice(inOffset.value, inOffset.value + dwaHeader.rleCompressedSize); var data = fflate.unzlibSync(compressed); // eslint-disable-line no-undef var rleBuffer = decodeRunLength(data.buffer); inOffset.value += dwaHeader.rleCompressedSize; } // Prepare outbuffer data offset var outBufferEnd = 0; var rowOffsets = new Array(channelData.length); for (var i = 0; i < rowOffsets.length; ++i) { rowOffsets[i] = new Array(); } for (var y = 0; y < info.lines; ++y) { for (var chan = 0; chan < channelData.length; ++chan) { rowOffsets[chan].push(outBufferEnd); outBufferEnd += channelData[chan].width * info.type * INT16_SIZE; } } // Lossy DCT decode RGB channels lossyDctDecode(cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer); // Decode other channels for (var i = 0; i < channelData.length; ++i) { var cd = channelData[i]; if (cd.decoded) continue; switch (cd.compression) { case RLE: var row = 0; var rleOffset = 0; for (var y = 0; y < info.lines; ++y) { var rowOffsetBytes = rowOffsets[i][row]; for (var x = 0; x < cd.width; ++x) { for (var byte = 0; byte < INT16_SIZE * cd.type; ++byte) { outBuffer[rowOffsetBytes++] = rleBuffer[rleOffset + byte * cd.width * cd.height]; } rleOffset++; } row++; } break; case LOSSY_DCT: // skip default: throw 'EXRLoader.parse: unsupported channel compression'; } } return new DataView(outBuffer.buffer); } function parseNullTerminatedString(buffer, offset) { var uintBuffer = new Uint8Array(buffer); var endOffset = 0; while (uintBuffer[offset.value + endOffset] != 0) { endOffset += 1; } var stringValue = new TextDecoder().decode(uintBuffer.slice(offset.value, offset.value + endOffset)); offset.value = offset.value + endOffset + 1; return stringValue; } function parseFixedLengthString(buffer, offset, size) { var stringValue = new TextDecoder().decode(new Uint8Array(buffer).slice(offset.value, offset.value + size)); offset.value = offset.value + size; return stringValue; } function parseUlong(dataView, offset) { var uLong = dataView.getUint32(0, true); offset.value = offset.value + ULONG_SIZE; return uLong; } function parseRational(dataView, offset) { var x = parseInt32(dataView, offset); var y = parseUint32(dataView, offset); return [x, y]; } function parseTimecode(dataView, offset) { var x = parseUint32(dataView, offset); var y = parseUint32(dataView, offset); return [x, y]; } function parseInt32(dataView, offset) { var Int32 = dataView.getInt32(offset.value, true); offset.value = offset.value + INT32_SIZE; return Int32; } function parseUint32(dataView, offset) { var Uint32 = dataView.getUint32(offset.value, true); offset.value = offset.value + INT32_SIZE; return Uint32; } function parseUint8Array(uInt8Array, offset) { var Uint8 = uInt8Array[offset.value]; offset.value = offset.value + INT8_SIZE; return Uint8; } function parseUint8(dataView, offset) { var Uint8 = dataView.getUint8(offset.value); offset.value = offset.value + INT8_SIZE; return Uint8; } function parseInt64(dataView, offset) { var int = Number(dataView.getBigInt64(offset.value, true)); offset.value += ULONG_SIZE; return int; } function parseFloat32(dataView, offset) { var float = dataView.getFloat32(offset.value, true); offset.value += FLOAT32_SIZE; return float; } function decodeFloat32(dataView, offset) { return _three.DataUtils.toHalfFloat(parseFloat32(dataView, offset)); } // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript function decodeFloat16(binary) { var exponent = (binary & 0x7C00) >> 10, fraction = binary & 0x03FF; return (binary >> 15 ? -1 : 1) * (exponent ? exponent === 0x1F ? fraction ? NaN : Infinity : Math.pow(2, exponent - 15) * (1 + fraction / 0x400) : 6.103515625e-5 * (fraction / 0x400)); } function parseUint16(dataView, offset) { var Uint16 = dataView.getUint16(offset.value, true); offset.value += INT16_SIZE; return Uint16; } function parseFloat16(buffer, offset) { return decodeFloat16(parseUint16(buffer, offset)); } function parseChlist(dataView, buffer, offset, size) { var startOffset = offset.value; var channels = []; while (offset.value < startOffset + size - 1) { var name = parseNullTerminatedString(buffer, offset); var pixelType = parseInt32(dataView, offset); var pLinear = parseUint8(dataView, offset); offset.value += 3; // reserved, three chars var xSampling = parseInt32(dataView, offset); var ySampling = parseInt32(dataView, offset); channels.push({ name: name, pixelType: pixelType, pLinear: pLinear, xSampling: xSampling, ySampling: ySampling }); } offset.value += 1; return channels; } function parseChromaticities(dataView, offset) { var redX = parseFloat32(dataView, offset); var redY = parseFloat32(dataView, offset); var greenX = parseFloat32(dataView, offset); var greenY = parseFloat32(dataView, offset); var blueX = parseFloat32(dataView, offset); var blueY = parseFloat32(dataView, offset); var whiteX = parseFloat32(dataView, offset); var whiteY = parseFloat32(dataView, offset); return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY }; } function parseCompression(dataView, offset) { var compressionCodes = ['NO_COMPRESSION', 'RLE_COMPRESSION', 'ZIPS_COMPRESSION', 'ZIP_COMPRESSION', 'PIZ_COMPRESSION', 'PXR24_COMPRESSION', 'B44_COMPRESSION', 'B44A_COMPRESSION', 'DWAA_COMPRESSION', 'DWAB_COMPRESSION']; var compression = parseUint8(dataView, offset); return compressionCodes[compression]; } function parseBox2i(dataView, offset) { var xMin = parseUint32(dataView, offset); var yMin = parseUint32(dataView, offset); var xMax = parseUint32(dataView, offset); var yMax = parseUint32(dataView, offset); return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax }; } function parseLineOrder(dataView, offset) { var lineOrders = ['INCREASING_Y']; var lineOrder = parseUint8(dataView, offset); return lineOrders[lineOrder]; } function parseV2f(dataView, offset) { var x = parseFloat32(dataView, offset); var y = parseFloat32(dataView, offset); return [x, y]; } function parseV3f(dataView, offset) { var x = parseFloat32(dataView, offset); var y = parseFloat32(dataView, offset); var z = parseFloat32(dataView, offset); return [x, y, z]; } function parseValue(dataView, buffer, offset, type, size) { if (type === 'string' || type === 'stringvector' || type === 'iccProfile') { return parseFixedLengthString(buffer, offset, size); } else if (type === 'chlist') { return parseChlist(dataView, buffer, offset, size); } else if (type === 'chromaticities') { return parseChromaticities(dataView, offset); } else if (type === 'compression') { return parseCompression(dataView, offset); } else if (type === 'box2i') { return parseBox2i(dataView, offset); } else if (type === 'lineOrder') { return parseLineOrder(dataView, offset); } else if (type === 'float') { return parseFloat32(dataView, offset); } else if (type === 'v2f') { return parseV2f(dataView, offset); } else if (type === 'v3f') { return parseV3f(dataView, offset); } else if (type === 'int') { return parseInt32(dataView, offset); } else if (type === 'rational') { return parseRational(dataView, offset); } else if (type === 'timecode') { return parseTimecode(dataView, offset); } else if (type === 'preview') { offset.value += size; return 'skipped'; } else { offset.value += size; return undefined; } } var bufferDataView = new DataView(buffer); var uInt8Array = new Uint8Array(buffer); var EXRHeader = {}; bufferDataView.getUint32(0, true); // magic bufferDataView.getUint8(4, true); // versionByteZero bufferDataView.getUint8(5, true); // fullMask // start of header var offset = { value: 8 }; // start at 8, after magic stuff var keepReading = true; while (keepReading) { var attributeName = parseNullTerminatedString(buffer, offset); if (attributeName == 0) { keepReading = false; } else { var attributeType = parseNullTerminatedString(buffer, offset); var attributeSize = parseUint32(bufferDataView, offset); var attributeValue = parseValue(bufferDataView, buffer, offset, attributeType, attributeSize); if (attributeValue === undefined) { console.warn("EXRLoader.parse: skipped unknown header attribute type '".concat(attributeType, "'.")); } else { EXRHeader[attributeName] = attributeValue; } } } // offsets var dataWindowHeight = EXRHeader.dataWindow.yMax + 1; var uncompress; var scanlineBlockSize; switch (EXRHeader.compression) { case 'NO_COMPRESSION': scanlineBlockSize = 1; uncompress = uncompressRAW; break; case 'RLE_COMPRESSION': scanlineBlockSize = 1; uncompress = uncompressRLE; break; case 'ZIPS_COMPRESSION': scanlineBlockSize = 1; uncompress = uncompressZIP; break; case 'ZIP_COMPRESSION': scanlineBlockSize = 16; uncompress = uncompressZIP; break; case 'PIZ_COMPRESSION': scanlineBlockSize = 32; uncompress = uncompressPIZ; break; case 'PXR24_COMPRESSION': scanlineBlockSize = 16; uncompress = uncompressPXR; break; case 'DWAA_COMPRESSION': scanlineBlockSize = 32; uncompress = uncompressDWA; break; case 'DWAB_COMPRESSION': scanlineBlockSize = 256; uncompress = uncompressDWA; break; default: throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported'; } var size_t; var getValue; // mixed pixelType not supported var pixelType = EXRHeader.channels[0].pixelType; if (pixelType === 1) { // half switch (this.type) { case _three.UnsignedByteType: case _three.FloatType: getValue = parseFloat16; size_t = INT16_SIZE; break; case _three.HalfFloatType: getValue = parseUint16; size_t = INT16_SIZE; break; } } else if (pixelType === 2) { // float switch (this.type) { case _three.UnsignedByteType: case _three.FloatType: getValue = parseFloat32; size_t = FLOAT32_SIZE; break; case _three.HalfFloatType: getValue = decodeFloat32; size_t = FLOAT32_SIZE; } } else { throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.'; } var numBlocks = dataWindowHeight / scanlineBlockSize; for (var i = 0; i < numBlocks; i++) { parseUlong(bufferDataView, offset); // scanlineOffset } // we should be passed the scanline offset table, start reading pixel data var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1; var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1; // Firefox only supports RGBA (half) float textures // var numChannels = EXRHeader.channels.length; var numChannels = 4; var size = width * height * numChannels; // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten switch (this.type) { case _three.UnsignedByteType: case _three.FloatType: var byteArray = new Float32Array(size); if (EXRHeader.channels.length < numChannels) { byteArray.fill(1, 0, size); } break; case _three.HalfFloatType: var byteArray = new Uint16Array(size); if (EXRHeader.channels.length < numChannels) { byteArray.fill(0x3C00, 0, size); // Uint16Array holds half float data, 0x3C00 is 1 } break; default: console.error('THREE.EXRLoader: unsupported type: ', this.type); break; } var channelOffsets = { R: 0, G: 1, B: 2, A: 3 }; var compressionInfo = { size: 0, width: width, lines: scanlineBlockSize, offset: offset, array: uInt8Array, viewer: bufferDataView, type: pixelType, channels: EXRHeader.channels.length }; var line; var size; var viewer; var tmpOffset = { value: 0 }; for (var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx++) { line = parseUint32(bufferDataView, offset); // line_no size = parseUint32(bufferDataView, offset); // data_len compressionInfo.lines = line + scanlineBlockSize > height ? height - line : scanlineBlockSize; compressionInfo.offset = offset; compressionInfo.size = size; viewer = uncompress(compressionInfo); offset.value += size; for (var line_y = 0; line_y < scanlineBlockSize; line_y++) { var true_y = line_y + scanlineBlockIdx * scanlineBlockSize; if (true_y >= height) break; for (var channelID = 0; channelID < EXRHeader.channels.length; channelID++) { var cOff = channelOffsets[EXRHeader.channels[channelID].name]; for (var x = 0; x < width; x++) { var idx = line_y * (EXRHeader.channels.length * width) + channelID * width + x; tmpOffset.value = idx * size_t; var val = getValue(viewer, tmpOffset); byteArray[(height - 1 - true_y) * (width * numChannels) + x * numChannels + cOff] = val; } } } } if (this.type === _three.UnsignedByteType) { var v, _i; var _size = byteArray.length; var RGBEArray = new Uint8Array(_size); for (var h = 0; h < height; ++h) { for (var w = 0; w < width; ++w) { _i = h * width * 4 + w * 4; var red = byteArray[_i]; var green = byteArray[_i + 1]; var blue = byteArray[_i + 2]; v = red > green ? red : green; v = blue > v ? blue : v; if (v < 1e-32) { RGBEArray[_i] = RGBEArray[_i + 1] = RGBEArray[_i + 2] = RGBEArray[_i + 3] = 0; } else { var res = frexp(v); v = res[0] * 256 / v; RGBEArray[_i] = red * v; RGBEArray[_i + 1] = green * v; RGBEArray[_i + 2] = blue * v; RGBEArray[_i + 3] = res[1] + 128; } } } byteArray = RGBEArray; } var format = this.type === _three.UnsignedByteType ? _three.RGBEFormat : numChannels === 4 ? _three.RGBAFormat : _three.RGBFormat; return { header: EXRHeader, width: width, height: height, data: byteArray, format: format, type: this.type }; } }, { key: "setDataType", value: function setDataType(value) { this.type = value; return this; } }, { key: "load", value: function load(url, onLoad, onProgress, onError) { function onLoadCallback(texture, texData) { switch (texture.type) { case _three.UnsignedByteType: texture.encoding = _three.RGBEEncoding; texture.minFilter = _three.NearestFilter; texture.magFilter = _three.NearestFilter; texture.generateMipmaps = false; texture.flipY = false; break; case _three.FloatType: case _three.HalfFloatType: texture.encoding = _three.LinearEncoding; texture.minFilter = _three.LinearFilter; texture.magFilter = _three.LinearFilter; texture.generateMipmaps = false; texture.flipY = false; break; } if (onLoad) onLoad(texture, texData); } return _get(_getPrototypeOf(EXRLoader.prototype), "load", this).call(this, url, onLoadCallback, onProgress, onError); } }]); return EXRLoader; }(_three.DataTextureLoader); _exports.EXRLoader = EXRLoader; });